Artículo
Ab initio and shell model studies of structural, thermoelastic and vibrational properties of SnO 2 under pressure
Casali, Ricardo Antonio; Lasave, Jorge Augusto
; Caravaca, M. A.; Koval, Sergio Fabian
; Ponce Altamirano, Claudio Ariel
; Migoni, Ricardo Luis
Fecha de publicación:
02/2013
Editorial:
IOP Publishing
Revista:
Journal of Physics: Condensed Matter
ISSN:
0953-8984
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The pressure dependences of the structural, thermoelastic and vibrational properties of SnO2 in its rutile phase are studied, as well as the pressure-induced transition to a CaCl2-type phase. These studies have been performed by means of ab initio (AI) density functional theory calculations using the localized basis code SIESTA. The results are employed to develop a shell model (SM) for application in future studies of nanostructured SnO2. A good agreement of the SM results for the pressure dependences of the above properties with the ones obtained from present and previous AI calculations as well as from experiments is achieved. The transition is characterized by a rotation of the Sn-centered oxygen octahedra around the tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and an orthorhombic distortion appears above the critical pressure Pc. A zone-center phonon of B1g symmetry in the rutile phase involves such rotation and softens on approaching Pc. It becomes an Ag mode which stabilizes with increasing pressure in the CaCl2 phase. This behavior, together with the softening of the shear modulus (C11 −C12)/2 related to the orthorhombic distortion, allows a precise determination of a value for Pc. An additional determination is provided by the splitting of the basal plane lattice parameters. Both the AI and the experimentally observed softening of the B1g mode are incomplete, indicating a small discontinuity at the transition. However, all results show continuous changes in volume and lattice parameters, indicating a second-order transition. All these results indicate that there should be sufficient confidence for the future employment of the shell model.
Palabras clave:
Phonons
,
Elasticity
,
Ab Initio
,
Shell Model
,
Sno2
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - NORDESTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NORDESTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NORDESTE
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
Casali, Ricardo Antonio; Lasave, Jorge Augusto; Caravaca, M. A.; Koval, Sergio Fabian; Ponce Altamirano, Claudio Ariel; et al.; Ab initio and shell model studies of structural, thermoelastic and vibrational properties of SnO 2 under pressure; IOP Publishing; Journal of Physics: Condensed Matter; 25; 13; 2-2013; 135404-135415
Compartir
Altmétricas