Mostrar el registro sencillo del ítem
dc.contributor.author
Lorenzetti, Carlos Martin

dc.contributor.author
Maguitman, Ana Gabriela

dc.contributor.author
Leake, David
dc.contributor.author
Menczer, Filippo
dc.contributor.author
Reichherzer, Thomas
dc.date.available
2018-09-12T17:20:34Z
dc.date.issued
2016-12
dc.identifier.citation
Lorenzetti, Carlos Martin; Maguitman, Ana Gabriela; Leake, David; Menczer, Filippo; Reichherzer, Thomas; Mining for topics to suggest knowledge model extensions; Association for Computing Machinery; ACM Transactions on Knowledge Discovery from Data; 11; 2; 12-2016; 1-30
dc.identifier.issn
1556-4681
dc.identifier.uri
http://hdl.handle.net/11336/59330
dc.description.abstract
Electronic concept maps, interlinked with other concept maps and multimedia resources, can provide rich knowledge models to capture and share human knowledge. This article presents and evaluates methods to support experts as they extend existing knowledge models, by suggesting new context-relevant topics mined from Web search engines. The task of generating topics to support knowledge model extension raises two research questions: first, how to extract topic descriptors and discriminators from concept maps; and second, how to use these topic descriptors and discriminators to identify candidate topics on the Web with the right balance of novelty and relevance. To address these questions, this article first develops the theoretical framework required for a "topic suggester" to aid information search in the context of a knowledge model under construction. It then presents and evaluates algorithms based on this framework and applied in EXTENDER, an implemented tool for topic suggestion. EXTENDER has been developed and tested within CmapTools, a widely used system for supporting knowledge modeling using concept maps. However, the generality of the algorithms makes them applicable to a broad class of knowledge modeling systems, and to Web search in general.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Association for Computing Machinery

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Concept Mapping
dc.subject
Intelligent Suggesters
dc.subject
Knowledge Construction
dc.subject
Knowledge Discovery
dc.subject
Web Mining
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Mining for topics to suggest knowledge model extensions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-30T14:40:19Z
dc.identifier.eissn
1556-472X
dc.journal.volume
11
dc.journal.number
2
dc.journal.pagination
1-30
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Lorenzetti, Carlos Martin. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
dc.description.fil
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Leake, David. Indiana University; Estados Unidos
dc.description.fil
Fil: Menczer, Filippo. Indiana University; Estados Unidos
dc.description.fil
Fil: Reichherzer, Thomas. University of West Florida; Estados Unidos
dc.journal.title
ACM Transactions on Knowledge Discovery from Data
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1145/2997657
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/citation.cfm?id=2997657
Archivos asociados