Mostrar el registro sencillo del ítem
dc.contributor.author
Pérez, Diego Sebastián

dc.contributor.author
Bromberg, Facundo

dc.contributor.author
Díaz, Carlos Ariel

dc.date.available
2018-09-12T15:03:31Z
dc.date.issued
2017-04
dc.identifier.citation
Pérez, Diego Sebastián; Bromberg, Facundo; Díaz, Carlos Ariel; Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines; Elsevier; Computers and Eletronics in Agriculture; 135; 4-2017; 81-95
dc.identifier.issn
0168-1699
dc.identifier.uri
http://hdl.handle.net/11336/59287
dc.description.abstract
In viticulture, there are several applications where bud detection in vineyard images is a necessary task, susceptible of being automated through the use of computer vision methods. A common and effective family of visual detection algorithms are the scanning-window type, that slide a (usually) fixed size window along the original image, classifying each resulting windowed-patch as containing or not containing the target object. The simplicity of these algorithms finds its most challenging aspect in the classification stage. Interested in grapevine buds detection in natural field conditions, this paper presents a classification method for images of grapevine buds ranging 100–1600 pixels in diameter, captured in outdoor, under natural field conditions, in winter (i.e., no grape bunches, very few leaves, and dormant buds), without artificial background, and with minimum equipment requirements. The proposed method uses well-known computer vision technologies: Scale-Invariant Feature Transform for calculating low-level features, Bag of Features for building an image descriptor, and Support Vector Machines for training a classifier. When evaluated over images containing buds of at least 100 pixels in diameter, the approach achieves a recall higher than 0.9 and a precision of 0.86 over all windowed-patches covering the whole bud and down to 60% of it, and scaled up to window patches containing a proportion of 20–80% of bud versus background pixels. This robustness on the position and size of the window demonstrates its viability for use as the classification stage in a scanning-window detection algorithms.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Computer Vision
dc.subject
Grapevine Bud
dc.subject
Image Classification
dc.subject
Precision Viticulture
dc.subject
Scanning-Window Detection
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-12T13:59:58Z
dc.journal.volume
135
dc.journal.pagination
81-95
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Pérez, Diego Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina. Universidad Nacional de Cuyo; Argentina
dc.description.fil
Fil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Díaz, Carlos Ariel. Universidad Tecnológica Nacional; Argentina
dc.journal.title
Computers and Eletronics in Agriculture

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.compag.2017.01.020
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168169916301818
Archivos asociados