Mostrar el registro sencillo del ítem

dc.contributor.author
Pozo Lopez, Gabriela del Valle  
dc.contributor.author
Condo, Adriana Maria  
dc.contributor.author
Fabietti, Luis Maria Rodolfo  
dc.contributor.author
Winkler, Elin Lilian  
dc.contributor.author
Haberkorn, Nestor Fabian  
dc.contributor.author
Urreta, Silvia Elena  
dc.date.available
2018-09-12T15:03:05Z  
dc.date.issued
2017-02  
dc.identifier.citation
Pozo Lopez, Gabriela del Valle; Condo, Adriana Maria; Fabietti, Luis Maria Rodolfo; Winkler, Elin Lilian; Haberkorn, Nestor Fabian; et al.; Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons; Elsevier Science Inc; Materials Characterization; 124; 2-2017; 171-181  
dc.identifier.issn
1044-5803  
dc.identifier.uri
http://hdl.handle.net/11336/59284  
dc.description.abstract
Stoichiometric Ni2MnGa alloys are processed by two rapid solidification techniques – single-roller (SR) and twin-roller (TR) melt spinning – and the resulting microstructures and magnetic properties determined. Samples processed at tangential wheel speeds of 10 m/s (V10) and 15 m/s (V15) are studied in the as-cast condition to analyze the influence of the production methods on the microstructure. Important aspects like the resulting phases, their crystallographic texture, magnetic properties, martensitic transformation temperatures and Curie temperatures are compared. In addition, the magnetization mechanism involving twin boundary motion is explored. Our results indicate that the TR method provides lower cooling rates, thicker samples, higher internal stresses and larger MnS precipitates. However, the quenching rate is mainly determined by the tangential wheel velocity. TR samples also exhibit [100] texture normal to the ribbon plane but in a lesser extent than SR ribbons. Martensitic transformation temperatures are higher in samples V15 (~ 150 K) than in V10 (~ 100 K), with no clear difference between the SR and TR modes. This behavior is explained by considering distinct degrees of disorder in the L21 austenite phase resulting from quenching. The hysteresis of the transformation, defined as the difference Af − MS, takes similar values in the four samples analyzed. Pre-martensitic transformation temperatures are also slightly higher in samples V15, (230 ± 3) K, than in samples V10, (222 ± 3) K, as the magnitude of the Hopkinson effect, in good agreement with a higher residual stress level in TR ribbons. In the martensitic state, all ribbons exhibit hysteresis loops characteristic of a magnetization mechanism involving twin boundary motion. The switching magnetic fields for the onset of Type I twin boundary motion result between 220 mT and 365 mT, values equivalent to twinning stresses of about 1 MPa. It is concluded that both procedures, SR and TR melt spinning, provide microstructures favoring magnetic field induced twin variant reorientation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Magnetic Properties  
dc.subject
Martensitic Transformation  
dc.subject
Microstructure  
dc.subject
Rapid Solidification  
dc.subject
Shape&Ndash;Memory Alloys  
dc.subject
Transmission Electron Microscopy  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-31T13:51:28Z  
dc.journal.volume
124  
dc.journal.pagination
171-181  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Pozo Lopez, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Condo, Adriana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina  
dc.description.fil
Fil: Fabietti, Luis Maria Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina  
dc.description.fil
Fil: Haberkorn, Nestor Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Urreta, Silvia Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.journal.title
Materials Characterization  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.matchar.2016.12.020  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1044580316309822