Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images

Orlando, José IgnacioIcon ; Prokofyeva, Elena; Blaschko, Matthew B.
Fecha de publicación: 01/2017
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Transactions On Bio-medical Engineering
ISSN: 0018-9294
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Goal: In this work, we present an extensive description and evaluation of our method for blood vessel segmentation in fundus images based on a discriminatively trained fully connected conditional random field model. Methods: Standard segmentation priors such as a Potts model or total variation usually fail when dealing with thin and elongated structures. We overcome this difficulty by using a conditional random field model with more expressive potentials, taking advantage of recent results enabling inference of fully connected models almost in real time. Parameters of the method are learned automatically using a structured output support vector machine, a supervised technique widely used for structured prediction in a number of machine learning applications. Results: Our method, trained with state of the art features, is evaluated both quantitatively and qualitatively on four publicly available datasets: DRIVE, STARE, CHASEDB1, and HRF. Additionally, a quantitative comparison with respect to other strategies is included. Conclusion: The experimental results show that this approach outperforms other techniques when evaluated in terms of sensitivity, F1-score, G-mean, and Matthews correlation coefficient. Additionally, it was observed that the fully connected model is able to better distinguish the desired structures than the local neighborhood-based approach. Significance: Results suggest that this method is suitable for the task of segmenting elongated structures, a feature that can be exploited to contribute with other medical and biological applications.
Palabras clave: Blood Vessel Segmentation , Conditional Random Fields (Crfs) , Fundus Imaging , Structured Output Support Vector Machine (Sosvm)
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 19.82Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/58924
DOI: http://dx.doi.org/10.1109/TBME.2016.2535311
URL: https://ieeexplore.ieee.org/document/7420682/
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Orlando, José Ignacio; Prokofyeva, Elena; Blaschko, Matthew B.; A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images; Institute of Electrical and Electronics Engineers; Ieee Transactions On Bio-medical Engineering; 64; 1; 1-2017; 16-27
Compartir
Altmétricas
 
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES