Artículo
Spectral-like duality for distributive Hilbert algebras with infimum
Fecha de publicación:
10/2017
Editorial:
Springer
Revista:
Algebra Universalis
ISSN:
0002-5240
e-ISSN:
1420-8911
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Distributive Hilbert algebras with infimum, or DH^-algebras for short, are algebras with implication and conjunction, in which the implication and the conjunction do not necessarily satisfy the residuation law. These algebras do not fall under the scope of the usual duality theory for lattice expansions, precisely because they lack residuation. We propose a new approach, that consists of regarding the conjunction as the additional operation on the underlying implicative structure. In this paper, we introduce a class of spaces, based on compactly-based sober topological spaces. We prove that the category of these spaces and certain relations is dually equivalent to the category of DH^-algebras and ∧ -semi-homomorphisms. We show that the restriction of this duality to a wide subcategory of spaces gives us a duality for the category of DH^-algebras and algebraic homomorphisms. This last duality generalizes the one given by the author in 2003 for implicative semilattices. Moreover, we use the duality to give a dual characterization of the main classes of filters for DH^-algebras, namely, (irreducible) meet filters, (irreducible) implicative filters and absorbent filters.
Palabras clave:
Hilbert Algebras
,
Topological Representation
,
Distributive Semilattices
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Celani, Sergio Arturo; Esteban, María; Spectral-like duality for distributive Hilbert algebras with infimum; Springer; Algebra Universalis; 78; 2; 10-2017; 193-213
Compartir
Altmétricas