Mostrar el registro sencillo del ítem
dc.contributor.author
Holzman, Mauro Ezequiel
dc.contributor.author
Rivas, Raúl Eduardo
dc.date.available
2018-09-07T16:18:26Z
dc.date.issued
2016-01
dc.identifier.citation
Holzman, Mauro Ezequiel; Rivas, Raúl Eduardo; Early Maize Yield Forecasting from Remotely Sensed Temperature/Vegetation Index Measurements; Institute of Electrical and Electronics Engineers; IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; 9; 1; 1-2016; 507-519
dc.identifier.issn
1939-1404
dc.identifier.uri
http://hdl.handle.net/11336/58706
dc.description.abstract
High and low soil moisture availability is one of the main limiting factors-Affecting crops productivity. Thus, determination of the relationship between them is crucial for food security and support importing-exporting strategies. The aim of this work was to analyze the aptitude of temperature vegetation dryness index (TVDI) to forecast maize yield. MODIS/AQUA enhanced vegetation index and land surface temperature (LST) at 1 km were used to calculate TVDI and maize yield over a large agricultural area of Argentine Pampas. The comparison between TVDI and official yield statistics was carried out to derive regression models in two agro-climatic zones, obtaining linear and quadratic adjustments. The models account for between 73% and 83% of yield variability, with the best prediction in the humid zone. The RMSE values ranged from 14% to 19% of average yield. The bias showed a slightly higher difference between predicted and observed yield data in semi-Arid zone. The models showed aptitude to estimate yield with reasonable accuracy 8-12 weeks before harvest. In addition, the TVDI-maize yield relationship and the impact of submonthly water stress were evaluated at field scale using yield measurements to ensure the analysis on maize. The highest ext{R}^{2} (0.61) was obtained using monthly values suggesting that the entire critical stage should be taken into account for yield forecasting. Although these results would not be directly extrapolated to other agricultural regions in the world, the proposed model is promising for forecasting spatial yield in other regions with poor data coverage several weeks before harvest.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Optical-Thermal
dc.subject
Soil Moisture
dc.subject
Stress Index
dc.subject
Temperature Vegetation Dryness Index (Tvdi)
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Early Maize Yield Forecasting from Remotely Sensed Temperature/Vegetation Index Measurements
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-07T13:45:38Z
dc.journal.volume
9
dc.journal.number
1
dc.journal.pagination
507-519
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Holzman, Mauro Ezequiel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
dc.description.fil
Fil: Rivas, Raúl Eduardo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Tandil. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Tandil; Argentina
dc.journal.title
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/JSTARS.2015.2504262
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7378859/
Archivos asociados