Mostrar el registro sencillo del ítem

dc.contributor.author
Tommasel, Antonela  
dc.contributor.author
Godoy, Daniela Lis  
dc.contributor.author
Zunino Suarez, Alejandro Octavio  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.date.available
2018-09-06T18:50:46Z  
dc.date.issued
2017-05  
dc.identifier.citation
Tommasel, Antonela; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Mateos Diaz, Cristian Maximiliano; A distributed approach for accelerating sparse matrix arithmetic operations for high-dimensional feature selection; Springer London Ltd; Knowledge And Information Systems; 51; 2; 5-2017; 459-497  
dc.identifier.issn
0219-1377  
dc.identifier.uri
http://hdl.handle.net/11336/58575  
dc.description.abstract
Matrix computations are both fundamental and ubiquitous in computational science, and as a result, they are frequently used in numerous disciplines of scientific computing and engineering. Due to the high computational complexity of matrix operations, which makes them critical to the performance of a large number of applications, their efficient execution in distributed environments becomes a crucial issue. This work proposes a novel approach for distributing sparse matrix arithmetic operations on computer clusters aiming at speeding-up the processing of high-dimensional matrices. The approach focuses on how to split such operations into independent parallel tasks by considering the intrinsic characteristics that distinguish each type of operation and the particular matrices involved. The approach was applied to the most commonly used arithmetic operations between matrices. The performance of the presented approach was evaluated considering a high-dimensional text feature selection approach and two real-world datasets. Experimental evaluation showed that the proposed approach helped to significantly reduce the computing times of big-scale matrix operations, when compared to serial and multi-thread implementations as well as several linear algebra software libraries.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer London Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Distributed Computing  
dc.subject
Feature Selection  
dc.subject
Matrix Arithmetic Operation  
dc.subject
Sparse Matrix  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A distributed approach for accelerating sparse matrix arithmetic operations for high-dimensional feature selection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-05T16:11:49Z  
dc.journal.volume
51  
dc.journal.number
2  
dc.journal.pagination
459-497  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
London  
dc.description.fil
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Knowledge And Information Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10115-016-0981-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10115-016-0981-5