Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A new approach to estimate variable contributions to Hotelling's statistic

Cedeño Viteri, Marco VinicioIcon ; Rodriguez Aguilar, Leandro Pedro FaustinoIcon ; Alvarez Medina, Carlos RodrigoIcon ; Sanchez, Mabel CristinaIcon
Fecha de publicación: 08/2012
Editorial: Elsevier Science
Revista: Chemometrics and Intelligent Laboratory Systems
ISSN: 0169-7439
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química

Resumen

Hotelling's statistic, also called T 2-statistic, is widely used in statistical process control as an extension of the univariate student's chart to reliably detect out of control status in multivariate processes. Although it is a very efficient tool for detection purposes, by itself, it offers no assistance about the origin of the declared faulty status. Several different approaches have been proposed to estimate the variable values' effect on the overall statistic's value. Some of these strategies work in the original measurement space, while others interpret the results coming from the analysis in latent variable spaces using for example Principal Component Analysis or Independent Component Analysis. With the same purpose, we present a novel approach, based on finding the nearest in-control neighbor of the observation point, in this work. The distance between both points is used to determine the contribution of each variable to the out of control state. Those variables whose distance measures exceed a certain threshold value are considered as suspicious. The results of the proposed strategy are compared with those obtained using other strategies that work both the original and latent variable spaces for case studies extracted from the literature.
Palabras clave: Contribution Plots , Fault Identification , Process Monitoring , Statistical Process Control , T 2-Statistic
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 259.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/58566
URL: http://www.sciencedirect.com/science/article/pii/S0169743912001591
DOI: http://dx.doi.org/10.1016/j.chemolab.2012.08.004
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Cedeño Viteri, Marco Vinicio; Rodriguez Aguilar, Leandro Pedro Faustino; Alvarez Medina, Carlos Rodrigo; Sanchez, Mabel Cristina; A new approach to estimate variable contributions to Hotelling's statistic; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 118; 8-2012; 120-126
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES