Mostrar el registro sencillo del ítem

dc.contributor.author
Farrukh, Aleeza  
dc.contributor.author
Paez, Julieta Irene  
dc.contributor.author
Salierno, Marcelo Javier  
dc.contributor.author
Fan, Wenqiang  
dc.contributor.author
Berninger, Benedikt  
dc.contributor.author
del Campo, Aránzazu  
dc.date.available
2018-09-06T14:13:59Z  
dc.date.issued
2017-03  
dc.identifier.citation
Farrukh, Aleeza; Paez, Julieta Irene; Salierno, Marcelo Javier; Fan, Wenqiang; Berninger, Benedikt; et al.; Bifunctional Poly(acrylamide) Hydrogels through Orthogonal Coupling Chemistries; American Chemical Society; Biomacromolecules; 18; 3; 3-2017; 906-913  
dc.identifier.issn
1525-7797  
dc.identifier.uri
http://hdl.handle.net/11336/58491  
dc.description.abstract
Biomaterials for cell culture allowing simple and quantitative presentation of instructive cues enable rationalization of the interplay between cells and their surrounding microenvironment. Poly(acrylamide) (PAAm) hydrogels are popular 2D-model substrates for this purpose. However, quantitative and reproducible biofunctionalization of PAAm hydrogels with multiple ligands in a trustable, controlled, and independent fashion is not trivial. Here, we describe a method for bifunctional modification of PAAm hydrogels with thiol- and amine- containing biomolecules with controlled densities in an independent, orthogonal manner. We developed copolymer networks of AAm with 9% acrylic acid and 2% N-(4-(5-(methylsulfonyl)-1,3,4-oxadiazol-2-yl)phenyl)acrylamide. The covalent binding of thiol- and amine-containing chromophores at tunable concentrations was demonstrated and quantified by UV spectroscopy. The morphology, mechanical properties, and homogeneity of the copolymerized hydrogels were characterized by scanning electron microscopy, dynamic mechanical analysis, and confocal microscopy studies. Our copolymer hydrogels were bifunctionalized with polylysine and a laminin-mimetic peptide using the specific chemistries. We analyzed the effect of binding protocol of the two components in the maturation of cultured postmitotic cortical neurons. Our substrates supported neuronal attachment, proliferation, and neuronal differentiation. We found that neurons cultured on our hydrogels bifunctionalized with ligand-specific chemistries in a sequential fashion exhibited higher maturation at comparable culture times than using a simultaneous bifunctionalization strategy, displaying a higher number of neurites, branches, and dendritic filopodia. These results demonstrate the relevance of quantitative and optimized coupling chemistries for the performance of simple biomaterials and with sensitive cell types.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Hydrogels  
dc.subject
Poly(Acrylamide)  
dc.subject
Biomaterials  
dc.subject
Neurons  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Bifunctional Poly(acrylamide) Hydrogels through Orthogonal Coupling Chemistries  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-31T13:47:57Z  
dc.journal.volume
18  
dc.journal.number
3  
dc.journal.pagination
906-913  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Farrukh, Aleeza. Leibniz Institute for New Materials; Alemania. Max-Planck-Institut für Polymerforschung; Alemania  
dc.description.fil
Fil: Paez, Julieta Irene. Leibniz Institute for New Materials; Alemania. Max-Planck-Institut für Polymerforschung; Alemania  
dc.description.fil
Fil: Salierno, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Max-Planck-Institut für Polymerforschung; Alemania. Johannes Gutenberg University; Alemania. Johannes Gutenberg University Mainz; Alemania  
dc.description.fil
Fil: Fan, Wenqiang. Johannes Gutenberg University; Alemania. Johannes Gutenberg University Mainz; Alemania  
dc.description.fil
Fil: Berninger, Benedikt. Johannes Gutenberg University; Alemania. Johannes Gutenberg University Mainz; Alemania  
dc.description.fil
Fil: del Campo, Aránzazu. Leibniz Institute for New Materials; Alemania. Max-Planck-Institut für Polymerforschung; Alemania. Saarland University; Alemania  
dc.journal.title
Biomacromolecules  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/acs.biomac.6b01784  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.biomac.6b01784