Mostrar el registro sencillo del ítem

dc.contributor.author
Tommasel, Antonela  
dc.contributor.author
Corbellini, Alejandro  
dc.contributor.author
Godoy, Daniela Lis  
dc.contributor.author
Schiaffino, Silvia Noemi  
dc.date.available
2018-09-05T20:38:13Z  
dc.date.issued
2016-05  
dc.identifier.citation
Tommasel, Antonela; Corbellini, Alejandro; Godoy, Daniela Lis; Schiaffino, Silvia Noemi; Personality-aware followee recommendation algorithms: An empirical analysis; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 51; 5-2016; 24-36  
dc.identifier.issn
0952-1976  
dc.identifier.uri
http://hdl.handle.net/11336/58470  
dc.description.abstract
As the popularity of micro-blogging sites, expressed as the number of active users and volume of online activities, increases, the difficulty of deciding who to follow also increases. Such decision might not depend on a unique factor as users usually have several reasons for choosing whom to follow. However, most recommendation systems almost exclusively rely on only two traditional factors: graph topology and user-generated content, disregarding the effect of psychological and behavioural characteristics, such as personality, over the followee selection process. Due to its effect over people's reactions and interactions with other individuals, personality is considered as one of the primary factors that influence human behaviour. This study aims at assessing the impact of personality in the accurate prediction of followees, beyond simple topological and content-based factors. It analyses whether user personality could condition followee selection by combining personality traits with the most commonly used followee predictive factors. Results showed that an accurate appreciation of such predictive factors tied to a quantitative analysis of personality is crucial for guiding the search of potential followees, and thus, enhance recommendations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Followee Recommendation  
dc.subject
Human Aspects Recommendation  
dc.subject
Personality Traits  
dc.subject
Twitter  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Personality-aware followee recommendation algorithms: An empirical analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-05T16:11:13Z  
dc.journal.volume
51  
dc.journal.pagination
24-36  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Engineering Applications Of Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0952197616000208  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engappai.2016.01.016