Artículo
Persisting big-data: The NoSQL landscape
Corbellini, Alejandro
; Mateos Diaz, Cristian Maximiliano
; Zunino Suarez, Alejandro Octavio
; Godoy, Daniela Lis
; Schiaffino, Silvia Noemi
Fecha de publicación:
01/2017
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Information Systems
ISSN:
0306-4379
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The growing popularity of massively accessed Web applications that store and analyze large amounts of data, being Facebook, Twitter and Google Search some prominent examples of such applications, have posed new requirements that greatly challenge traditional RDBMS. In response to this reality, a new way of creating and manipulating data stores, known as NoSQL databases, has arisen. This paper reviews implementations of NoSQL databases in order to provide an understanding of current tools and their uses. First, NoSQL databases are compared with traditional RDBMS and important concepts are explained. Only databases allowing to persist data and distribute them along different computing nodes are within the scope of this review. Moreover, NoSQL databases are divided into different types: Key-Value, Wide-Column, Document-oriented and Graph-oriented. In each case, a comparison of available databases is carried out based on their most important features.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Godoy, Daniela Lis; Schiaffino, Silvia Noemi; Persisting big-data: The NoSQL landscape; Pergamon-Elsevier Science Ltd; Information Systems; 63; 1-2017; 1-23
Compartir
Altmétricas