Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

QSPR-Perturbation Models for the Prediction of B-Epitopes from Immune Epitope Database: A Potentially Valuable Route for Predicting “In Silico” New Optimal Peptide Sequences and/or Boundary Conditions for Vaccine Development

Vázquez Prieto, SeveroIcon ; Paniagua Crespo, María Esperanza; Ubeira, Florencio M.; González Díaz, Humberto
Fecha de publicación: 12/2016
Editorial: Springer
Revista: International Journal Of Peptide Research And Therapeutics
ISSN: 1573-3149
e-ISSN: 1573-3904
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In the present study, three different physicochemical molecular properties for peptides were calculated using the program MARCH-INSIDE: atomic polarizability, partition coefficient, and polarity. These measures were used as input parameters of a linear discriminant analysis (LDA) in order to develop three different quantitative structure–property relationship (QSPR)-perturbation models for the prediction of B-epitopes reported in the immune epitope database (IEDB) given perturbations in peptide sequence, in vivo process, experimental techniques, and source or host organisms. The accuracy, sensitivity and specificity of the models were >90 % for both training and cross-validation series. The statistical parameters of the models were compared to the results achieved with the electronegativity QSPR-perturbation model previously reported by González-Díaz et al. (J Immunol Res. doi:10.1155/2014/768515, 2014). The results indicate that this type of approach may constitute a potentially valuable route for predicting “in silico” new optimal peptide sequences and/or boundary conditions for vaccine development.
Palabras clave: Epitopes , Markov Chains , Perturbation Theory , Qsar/Qspr Models , Vaccine Design
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.672Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/58459
DOI: http://dx.doi.org/10.1007/s10989-016-9524-x
URL: https://link.springer.com/article/10.1007%2Fs10989-016-9524-x
Colecciones
Articulos(CIVETAN)
Articulos de CENTRO DE INVESTIGACION VETERINARIA DE TANDIL
Citación
Vázquez Prieto, Severo; Paniagua Crespo, María Esperanza; Ubeira, Florencio M.; González Díaz, Humberto; QSPR-Perturbation Models for the Prediction of B-Epitopes from Immune Epitope Database: A Potentially Valuable Route for Predicting “In Silico” New Optimal Peptide Sequences and/or Boundary Conditions for Vaccine Development; Springer; International Journal Of Peptide Research And Therapeutics; 22; 4; 12-2016; 445-450
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES