Artículo
Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images
Fecha de publicación:
07/2016
Editorial:
Taylor & Francis
Revista:
Cogent Engineering
ISSN:
2331-1916
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The automated detection of coasts, riverbanks, and polynyas from synthetic aperture radar images is a difficult image processing task due to speckle noise. In this work we present a novel Fuzzy-Wavelet framework for bordeline region detection in SAR images. Our technique is based on a combination of Wavelet denoising and Fuzzy Logic which boost decision-making on noisy and poorly defined environments. Unlike most recent filtering-detection algorithms, we do not apply hypothesis tests (Wilcoxon-Mann Whitney-G0) to label the edge point candidates one by one, instead we construct a fuzzy map from wavelet denoised image and extract their borderline. We compare our algorithm performance with the popular Frost-Sobel approach and a version of Canny’s algorithm with data-dependent parameters, over a database of real polynyas and coastline simulated images under the multiplicative model. The experimental results are evaluated by comparing Pratt’s Figure of Merit index of edge map quality. In almost all test images our algorithm outperforms the standard algorithms in quality and speed.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Nemer, Karim Alejandra; Pucheta, Martín Alejo; Flesia, Ana Georgina; Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images; Taylor & Francis; Cogent Engineering; 3; 1; 7-2016; 1-21
Compartir
Altmétricas