Mostrar el registro sencillo del ítem

dc.contributor.author
Rodriguez, Juan Manuel  
dc.contributor.author
Godoy, Daniela Lis  
dc.contributor.author
Zunino Suarez, Alejandro Octavio  
dc.date.available
2018-09-05T19:09:56Z  
dc.date.issued
2016-08  
dc.identifier.citation
Rodriguez, Juan Manuel; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; An empirical comparison of feature selection methods in problem transformation multi-label classification; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 14; 8; 8-2016; 3784-3791  
dc.identifier.uri
http://hdl.handle.net/11336/58422  
dc.description.abstract
Multi-label classification (MLC) is a supervised learning problem in which a particular example can be associated with a set of labels instead of a single one as in traditional classification. Many real-world applications, such as Web page classification or resource tagging on the Social Web, are challenging for existing MLC algorithms, because the label space grows exponentially as instance space increases. Under the problem transformation approach, the most common alternative for MLC, multi-label problems are transformed into several single label problems, whose outputs are then aggregated into a prediction to the whole classification problem. Feature selection techniques become crucial in large-scale MLC problems to help reducing dimensionality. However, the impact of feature selection in multi-label setting has not been as extensively studied as in the case of single-label data. In this paper, we present an empirical evaluation of feature selection techniques in the context of the three main problem transformation MLC methods: Binary Relevance, Pair-wise and Label power-set. Experimentation was performed across a number of benchmark datasets for multi-label classification exhibiting varied characteristics, which allows observing the behavior of techniques and assessing their impact according to multiple metrics.  
dc.format
application/pdf  
dc.language.iso
spa  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Binary Relevance  
dc.subject
Feature Selection  
dc.subject
Homer  
dc.subject
Multi-Label Classification  
dc.subject
Pair-Wise  
dc.subject
Problem Transformation Classification  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An empirical comparison of feature selection methods in problem transformation multi-label classification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-05T16:11:09Z  
dc.identifier.eissn
1548-0992  
dc.journal.volume
14  
dc.journal.number
8  
dc.journal.pagination
3784-3791  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Rodriguez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
IEEE Latin America Transactions  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7786364/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TLA.2016.7786364