Mostrar el registro sencillo del ítem
dc.contributor.author
Rodriguez, Juan Cruz
dc.contributor.author
Gonzalez, Germán Alexis
dc.contributor.author
Fresno Rodríguez, Cristóbal
dc.contributor.author
Llera, Andrea Sabina
dc.contributor.author
Fernandez, Elmer Andres
dc.date.available
2018-09-05T19:01:45Z
dc.date.issued
2016-12
dc.identifier.citation
Rodriguez, Juan Cruz; Gonzalez, Germán Alexis; Fresno Rodríguez, Cristóbal; Llera, Andrea Sabina; Fernandez, Elmer Andres; Improving information retrieval in functional analysis; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 79; 12-2016; 10-20
dc.identifier.issn
0010-4825
dc.identifier.uri
http://hdl.handle.net/11336/58412
dc.description.abstract
Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Big Omics Data
dc.subject
Biological Insight
dc.subject
Breast Cancer
dc.subject
Functional Class Scoring
dc.subject
Gene Set Enrichment Analysis
dc.subject
Knowledge Discovery
dc.subject
Over Representation Analysis
dc.subject
R Framework
dc.subject
Singular Enrichment Analysis
dc.subject.classification
Biología Celular, Microbiología
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Improving information retrieval in functional analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-17T14:29:58Z
dc.journal.volume
79
dc.journal.pagination
10-20
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Rodriguez, Juan Cruz. Universidad Católica de Córdoba; Argentina. Universidad Nacional de Córdoba; Argentina
dc.description.fil
Fil: Gonzalez, Germán Alexis. Universidad Católica de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
dc.description.fil
Fil: Fresno Rodríguez, Cristóbal. Universidad Católica de Córdoba; Argentina
dc.description.fil
Fil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
dc.description.fil
Fil: Fernandez, Elmer Andres. Universidad Católica de Córdoba; Argentina
dc.journal.title
Computers In Biology And Medicine
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S001048251630244X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.compbiomed.2016.09.017
Archivos asociados