Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Approximate string matching: A lightweight approach to recognize gestures with Kinect

Ibañez, Rodrigo; Soria, AlvaroIcon ; Teyseyre, Alfredo RaulIcon ; Rodríguez, Guillermo HoracioIcon ; Campo, Marcelo RicardoIcon
Fecha de publicación: 02/2017
Editorial: Elsevier
Revista: Pattern Recognition
ISSN: 0031-3203
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Innovative technologies, such as 3D depth cameras, promote the development of natural interaction applications in many domains among large audiences. In this context, supervised machine learning techniques have been proved to be a flexible and robust approach to perform high level gesture recognition from 3D joints provided by these depth cameras. This paper proposes a lightweight approach to recognize gestures with Kinect by utilizing approximate string matching. The proposed approach encodes the movements of the joints as sequences of characters in order to simplify the gesture recognition as a widely studied string matching problem. We evaluated our approach by applying other widespread used techniques in the research field. The experimental evaluations show that the proposed approach can obtain relatively high performance in comparison with the state-of-the-art machine learning techniques. These findings provide further evidence that our approach could be a viable strategy for recognizing gestures, even in devices with medium and low processing capability (e.g., smartphones, tablets, etc.).
Palabras clave: Approximate String Matching , Gesture Recognition , Kinect , Machine Learning , Natural User Interfaces
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.774Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/58405
URL: http://www.sciencedirect.com/science/article/pii/S0031320316302357
DOI: http://dx.doi.org/10.1016/j.patcog.2016.08.022
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Ibañez, Rodrigo; Soria, Alvaro; Teyseyre, Alfredo Raul; Rodríguez, Guillermo Horacio; Campo, Marcelo Ricardo; Approximate string matching: A lightweight approach to recognize gestures with Kinect; Elsevier; Pattern Recognition; 62; 2-2017; 73-86
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES