Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the conditions for valid objective functions in blind separation of independent and dependent sources

Caiafa, Cesar FedericoIcon
Fecha de publicación: 10/2012
Editorial: Springer
Revista: Eurasip Journal on Advances in Signal Processing
ISSN: 1687-6180
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

It is well known that independent sources can be blindly detected and separated, one by one, from linear mixtures by identifying local extrema of certain objective functions (contrasts), like negentropy, Non-Gaussianity measures, kurtosis, etc. It was also suggested in [1], and verified in practice in [2,4], that some of these measures remain useful for particular cases with dependent sources, but not much work has been done in this respect and a rigorous theoretical ground still lacks. In this paper, it is shown that, if a specific type of pairwise dependence among sources exists, called Linear Conditional Expectation (LCE) law, then a family of objective functions are valid for their separation. Interestingly, this particular type of dependence arises in modeling material abundances in the spectral unmixing problem of remote sensed images. In this work, a theoretical novel approach is used to analyze Shannon entropy (SE), Non-Gaussianity (NG) measure and absolute moments of arbitrarily order, i.e. Generic Absolute (GA) moments for the separation of sources allowing them to be dependent. We provide theoretical results that show the conditions under which sources are isolated by searching for a maximum or a minimum. Also, simple and efficient algorithms based on Parzen windows estimations of probability density functions (pdfs) and Newton-Raphson iterations are proposed for the separation of dependent or independent sources. A set of simulation results on synthetic data and an application to the blind spectral unmixing problem are provided in order to validate our theoretical results and compare these algorithms against FastICA and a very recently proposed algorithm for dependent sources, the Bounded Component Analysis algorithm (BCA). It is shown that, for dependent sources verifying the LCE law, the NG measure provides the best separation results.
Palabras clave: Dependent Component Analysis (Dca) , Independent Component Analysis (Ica) , Blind Source Separation (Bss) , Generic Absolute (Ga) Moments
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.145Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/5840
DOI: http://dx.doi.org/10.1186/1687-6180-2012-255
URL: http://link.springer.com/article/10.1186/1687-6180-2012-255
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Caiafa, Cesar Federico; On the conditions for valid objective functions in blind separation of independent and dependent sources; Springer; Eurasip Journal on Advances in Signal Processing; 2012; 10-2012; 255-284
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES