Artículo
The cohomology ring of the 12-dimensional Fomin-Kirillov algebra
Fecha de publicación:
03/2016
Editorial:
Academic Press Inc Elsevier Science
Revista:
Advances in Mathematics
ISSN:
0001-8708
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The 12-dimensional Fomin-Kirillov algebra FK3 is defined as the quadratic algebra with generators a, b and c which satisfy the relations a2=b2=c2=0 and ab+bc+ca=0=ba+cb+ac. By a result of A. Milinski and H.-J. Schneider, this algebra is isomorphic to the Nichols algebra associated to the Yetter-Drinfeld module V, over the symmetric group S3, corresponding to the conjugacy class of all transpositions and the sign representation. Exploiting this identification, we compute the cohomology ring ExtFK3*(k,k), showing that it is a polynomial ring S[X] with coefficients in the symmetric braided algebra of V. As an application we also compute the cohomology rings of the bosonization FK3#kS3 and of its dual, which are 72-dimensional ordinary Hopf algebras.
Palabras clave:
Fomin-Kirillov Algebras
,
Nichols Bialgebras
,
Yoneda Ring
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Stefan, Dragos; Vay, Cristian Damian; The cohomology ring of the 12-dimensional Fomin-Kirillov algebra; Academic Press Inc Elsevier Science; Advances in Mathematics; 291; 3-2016; 584-620
Compartir
Altmétricas