Artículo
Calibrated geodesic foliations of hyperbolic space
Fecha de publicación:
01/2016
Editorial:
American Mathematical Society
Revista:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let H be the hyperbolic space of dimension n + 1. A geodesic foliation of H is given by a smooth unit vector field on L all of whose integral curves are geodesics. Each geodesic foliation of L determines an n-dimensional submanifold of the 2n-dimensional manifold L of all the oriented geodesics of H (up to orientation preserving reparametrizations). The space L has a canonical split semi-Riemannian metric induced by the Killing form of the isometry group of L. Using a split special Lagrangian calibration, we study the volume maximization problem for a certain class of geometrically distinguished geodesic foliations, whose corresponding submanifolds of L are space-like.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Godoy, Yamile Alejandra; Salvai, Marcos Luis; Calibrated geodesic foliations of hyperbolic space; American Mathematical Society; Proceedings of the American Mathematical Society; 144; 1; 1-2016; 359-367
Compartir
Altmétricas