Mostrar el registro sencillo del ítem

dc.contributor.author
Caiafa, Cesar Federico  
dc.contributor.author
Cichocki, Andrzej  
dc.date.available
2016-05-24T19:59:52Z  
dc.date.issued
2015-01  
dc.identifier.citation
Caiafa, Cesar Federico; Cichocki, Andrzej; Stable, robust and super fast reconstruction of tensors using multi-way projections; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 3; 1-2015; 780-793  
dc.identifier.issn
1053-587X  
dc.identifier.uri
http://hdl.handle.net/11336/5832  
dc.description.abstract
In the framework of multidimensional Compressed Sensing (CS), we introduce an analytical reconstruction formula that allows one to recover an Nth-order data tensor X from a reduced set of multi-way compressive measurements by exploiting its low multilinear-rank structure. Moreover, we show that, an interesting property of multi-way measurements allows us to build the reconstruction based on compressive linear measurements taken only in two selected modes, independently of the tensor order N. In addition, it is proved that, in the matrix case and in a particular case with 3rd-order tensors where the same 2D sensor operator is applied to all mode-3 slices, the proposed reconstruction X is stable in the sense that the approximation error is comparable to the one provided by the best low-multilinear-rank approximation, where is a threshold parameter that controls the approximation error. Through the analysis of the upper bound of the approximation error we show that, in the 2D case, an optimal value for the threshold parameter t = 0 > 0 exists, which is confirmed by our simulation results. On the other hand, our experiments on 3D datasets show that very good reconstructions are obtained using t = 0, which means that this parameter does not need to be tuned. Our extensive simulation results demonstrate the stability and robustness of the method when it is applied to real-world 2D and 3D signals. A comparison with state-of-the-arts sparsity based CS methods specialized for multidimensional signals is also included. A very attractive characteristic of the proposed method is that it provides a direct computation, i.e. it is non iterative in contrast to all existing sparsity based CS algorithms, thus providing super fast computations, even for large datasets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Compressed Sensing  
dc.subject
Kronecker-Cs  
dc.subject
Low-Rank Approximations  
dc.subject
Multiway Analysis  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Stable, robust and super fast reconstruction of tensors using multi-way projections  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-02-05T14:55:06Z  
dc.journal.volume
63  
dc.journal.number
3  
dc.journal.pagination
780-793  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina  
dc.description.fil
Fil: Cichocki, Andrzej. Brain Science Institute. Riken; Japón  
dc.journal.title
IEEE Transactions On Signal Processing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TSP.2014.2385040  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6994852  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2014.2385040  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1406.3295v2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/1406.3295v2