Mostrar el registro sencillo del ítem
dc.contributor.author
Rubino, Jorge German
dc.contributor.author
Caspari, Eva
dc.contributor.author
Müller, Tobias M.
dc.contributor.author
Holliger, Klaus
dc.date.available
2018-08-31T15:26:08Z
dc.date.issued
2017-07
dc.identifier.citation
Rubino, Jorge German; Caspari, Eva; Müller, Tobias M.; Holliger, Klaus; Fracture connectivity can reduce the velocity anisotropy of seismic waves; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 210; 1; 7-2017; 223-227
dc.identifier.issn
0956-540X
dc.identifier.uri
http://hdl.handle.net/11336/57877
dc.description.abstract
The degree of connectivity of fracture networks is a key parameter that controls the hydraulic properties of fractured rock formations. The current understanding is that this parameter does not alter the effective elastic properties of the probed medium and, hence, cannot be inferred from seismic data. However, this reasoning is based on static elasticity,which neglects dynamic effects related to wave-induced fluid pressure diffusion (FPD). Using a numerical upscaling procedure based on the theory of quasi-static poroelasticity, we provide the first evidence to suggest that fracture connectivity can reduce significantly velocity anisotropy in the seismic frequency band. Analyses of fluid pressure fields in response to the propagation of seismic waves demonstrate that this reduction of velocity anisotropy is not due to changes of the geometrical characteristics of the probed fracture networks, but rather related to variations of the stiffening effect of the fracture fluid in response to FPD. These results suggest that accounting for FPD effects may not only allow for improving estimations of geometrical and mechanical properties of fracture networks, but may also provide information with regard to the effective hydraulic properties.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Fracture And Flow
dc.subject
Numerical Modelling
dc.subject
Seismic Anisotropy
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Fracture connectivity can reduce the velocity anisotropy of seismic waves
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-31T14:09:18Z
dc.journal.volume
210
dc.journal.number
1
dc.journal.pagination
223-227
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
dc.description.fil
Fil: Caspari, Eva. Universite de Lausanne; Suiza
dc.description.fil
Fil: Müller, Tobias M.. Commonwealth Scientific and Industrial Research Organization; Australia
dc.description.fil
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
dc.journal.title
Geophysical Journal International
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1093/gji/ggx159
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article-abstract/210/1/223/3760172?redirectedFrom=fulltext
Archivos asociados