Mostrar el registro sencillo del ítem
dc.contributor.author
Barbosa, Nicolás D.
dc.contributor.author
Rubino, Jorge German
dc.contributor.author
Caspari, Eva
dc.contributor.author
Holliger, Klaus
dc.date.available
2018-08-31T15:26:02Z
dc.date.issued
2017-02
dc.identifier.citation
Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus; Extension of the classical linear slip model for fluid-saturated fractures: Accounting for fluid pressure diffusion effects; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 122; 2; 2-2017; 1302-1323
dc.identifier.issn
2169-9356
dc.identifier.uri
http://hdl.handle.net/11336/57876
dc.description.abstract
We develop extended boundary conditions based on the linear slip model that account for the impact of wave-induced fluid pressure diffusion between a fracture and its embedding background on the stiffening effect of the fluid saturating the fracture. We include these poroelastic effects into the linear slip model through complex-valued and frequency-dependent parameters characterizing the mechanical and hydraulic coupling between the two regions. This new set of effective fracture parameters contains generalized normal and tangential compliances, analogous to those defined in the classical formulation of the linear slip model, and an additional parameter related to the coupling between horizontal and vertical deformation of the fracture. Comparisons of the extended and classical linear slip models with a poroelastic thin layer model show that the extended formulation always performs better when modeling the displacement fields induced by an incident P wave as well as the scattering coefficients. We find that the contribution of the additional effective parameter involved in the proposed boundary conditions is significant at low frequencies with respect to the undrained frequency regime of the fracture and large angles of incidence. These extended boundary conditions can be readily incorporated into viscoelastic modeling algorithms simulating the response of a large-scale fluid-saturated fracture or multiple noninteracting fractures of this kind. The proposed model is expected not only to improve the estimation of mechanical characteristics of fractures in corresponding inversion schemes but can also be used for extracting information with regard to other practically important parameters, such as the background permeability.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Blackwell Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Linear Slip Model
dc.subject
Modeling
dc.subject
Poroleasticity
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Extension of the classical linear slip model for fluid-saturated fractures: Accounting for fluid pressure diffusion effects
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-31T14:09:16Z
dc.journal.volume
122
dc.journal.number
2
dc.journal.pagination
1302-1323
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Hoboken
dc.description.fil
Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza
dc.description.fil
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
dc.description.fil
Fil: Caspari, Eva. Universite de Lausanne; Suiza
dc.description.fil
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
dc.journal.title
Journal of Geophysical Research: Solid Earth
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1002/2016JB013636
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JB013636
Archivos asociados