Mostrar el registro sencillo del ítem

dc.contributor.author
Barbosa, Nicolás D.  
dc.contributor.author
Rubino, Jorge German  
dc.contributor.author
Caspari, Eva  
dc.contributor.author
Holliger, Klaus  
dc.date.available
2018-08-31T15:26:02Z  
dc.date.issued
2017-02  
dc.identifier.citation
Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus; Extension of the classical linear slip model for fluid-saturated fractures: Accounting for fluid pressure diffusion effects; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 122; 2; 2-2017; 1302-1323  
dc.identifier.issn
2169-9356  
dc.identifier.uri
http://hdl.handle.net/11336/57876  
dc.description.abstract
We develop extended boundary conditions based on the linear slip model that account for the impact of wave-induced fluid pressure diffusion between a fracture and its embedding background on the stiffening effect of the fluid saturating the fracture. We include these poroelastic effects into the linear slip model through complex-valued and frequency-dependent parameters characterizing the mechanical and hydraulic coupling between the two regions. This new set of effective fracture parameters contains generalized normal and tangential compliances, analogous to those defined in the classical formulation of the linear slip model, and an additional parameter related to the coupling between horizontal and vertical deformation of the fracture. Comparisons of the extended and classical linear slip models with a poroelastic thin layer model show that the extended formulation always performs better when modeling the displacement fields induced by an incident P wave as well as the scattering coefficients. We find that the contribution of the additional effective parameter involved in the proposed boundary conditions is significant at low frequencies with respect to the undrained frequency regime of the fracture and large angles of incidence. These extended boundary conditions can be readily incorporated into viscoelastic modeling algorithms simulating the response of a large-scale fluid-saturated fracture or multiple noninteracting fractures of this kind. The proposed model is expected not only to improve the estimation of mechanical characteristics of fractures in corresponding inversion schemes but can also be used for extracting information with regard to other practically important parameters, such as the background permeability.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Blackwell Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Linear Slip Model  
dc.subject
Modeling  
dc.subject
Poroleasticity  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Extension of the classical linear slip model for fluid-saturated fractures: Accounting for fluid pressure diffusion effects  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-31T14:09:16Z  
dc.journal.volume
122  
dc.journal.number
2  
dc.journal.pagination
1302-1323  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Hoboken  
dc.description.fil
Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Caspari, Eva. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Holliger, Klaus. Universite de Lausanne; Suiza  
dc.journal.title
Journal of Geophysical Research: Solid Earth  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1002/2016JB013636  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JB013636