Mostrar el registro sencillo del ítem

dc.contributor.author
Fernández, María Laura  
dc.contributor.author
Risk, Marcelo Raúl  
dc.contributor.author
Vernier, P. Thomas  
dc.date.available
2018-08-30T14:14:31Z  
dc.date.issued
2017-11  
dc.identifier.citation
Fernández, María Laura; Risk, Marcelo Raúl; Vernier, P. Thomas; Electropore Formation in Mechanically Constrained Phospholipid Bilayers; Springer; Journal of Membrane Biology; 251; 2; 11-2017; 237-245  
dc.identifier.issn
0022-2631  
dc.identifier.uri
http://hdl.handle.net/11336/57647  
dc.description.abstract
Molecular dynamics simulations of lipid bilayers in aqueous systems reveal how an applied electric field stabilizes the reorganization of the water–membrane interface into water-filled, membrane-spanning, conductive pores with a symmetric, toroidal geometry. The pore formation process and the resulting symmetric structures are consistent with other mathematical approaches such as continuum models formulated to describe the electroporation process. Some experimental data suggest, however, that the shape of lipid electropores in living cell membranes may be asymmetric. We describe here the axially asymmetric pores that form when mechanical constraints are applied to selected phospholipid atoms. Electropore formation proceeds even with severe constraints in place, but pore shape and pore formation time are affected. Since lateral and transverse movement of phospholipids may be restricted in cell membranes by covalent attachments to or non-covalent associations with other components of the membrane or to membrane-proximate intracellular or extracellular biomolecular assemblies, these lipid-constrained molecular models point the way to more realistic representations of cell membranes in electric fields.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Electroporation  
dc.subject
Molecular Dynamics  
dc.subject
Phospholipid Bilayer  
dc.subject
Position Constraints  
dc.subject.classification
Inmunología  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Electropore Formation in Mechanically Constrained Phospholipid Bilayers  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-28T13:35:54Z  
dc.journal.volume
251  
dc.journal.number
2  
dc.journal.pagination
237-245  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Fernández, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.description.fil
Fil: Risk, Marcelo Raúl. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Vernier, P. Thomas. Frank Reidy Research Center For Bioelectrics, Old Domin; Estados Unidos  
dc.journal.title
Journal of Membrane Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00232-017-0002-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00232-017-0002-y