Mostrar el registro sencillo del ítem
dc.contributor.author
Menni, Matías

dc.date.available
2018-08-24T19:15:54Z
dc.date.issued
2017-11
dc.identifier.citation
Menni, Matías; The construction of \pi_0 in Axiomatic Cohesion; De Gruyter; Tbilisi Mathematical Journal; 10; 3; 11-2017; 183-207
dc.identifier.issn
1512-0139
dc.identifier.uri
http://hdl.handle.net/11336/57061
dc.description.abstract
We study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of 0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E ! S, an idempotent monad pi_0 : E ightarrow E such that, for every X in E, pi_0 X = 1 if and only if (p^* Omega)^! : (p^* Omega)^1 ightarrow (p^* Omega)^X is an isomorphism. For instance, if E is the topological topos (over S = Set), the pi_0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the pi_0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E ightarrow S, p is pre-cohesive if and only if p^* : S ightarrow Eis cartesian closed. In this case, p_! = p_* pi_0 : E ightarrow S and the category of pi_0-algebras coincides with the subcategory p^* : S ightarrow E.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Axiomatic Cohesion
dc.subject
Topology
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
The construction of \pi_0 in Axiomatic Cohesion
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-24T13:36:32Z
dc.journal.volume
10
dc.journal.number
3
dc.journal.pagination
183-207
dc.journal.pais
Polonia

dc.journal.ciudad
Varsovia
dc.description.fil
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
dc.journal.title
Tbilisi Mathematical Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1515/tmj-2017-0108
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://content.sciendo.com/view/journals/tmj/10/3/article-p183.xml
Archivos asociados