Mostrar el registro sencillo del ítem
dc.contributor.author
Valdemoro, C.
dc.contributor.author
Alcoba, Diego Ricardo
dc.contributor.author
Tel, L. M.
dc.contributor.author
Pérez Romero, E.
dc.date.available
2018-08-24T15:33:54Z
dc.date.issued
2011-02
dc.identifier.citation
Valdemoro, C.; Alcoba, Diego Ricardo; Tel, L. M.; Pérez Romero, E.; Some theoretical questions about the G-particle-hole hypervirial equation; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 111; 2; 2-2011; 245-255
dc.identifier.issn
0020-7608
dc.identifier.uri
http://hdl.handle.net/11336/56959
dc.description.abstract
By applying a matrix contracting mapping, involving the G-particle-hole operator, to the matrix representation of the N-electron density hypervirial equation, one obtains the G-particle-hole hypervirial (GHV) equation (Alcoba, et al., Int J Quant Chem 2009, 109, 3178). This equation may be solved by exploiting the stationary property of the hypervirials (Hirschfelder, J Chem Phys 1960, 33, 1462; Fernández and Castro, Hypervirial Theorems., Lecture Notes in Chemistry Series 43, 1987) and by following the general lines of Mazziotti's approach for solving the anti-Hermitian contracted Schrödinger equation (Mazziotti, Phys Rev Lett 2006, 97, 143002), which can be identified with the second-order density hypervirial equation. The accuracy of the results obtained with this method when studying the ground-state of a set of atoms and molecules was excellent when compared with the equivalent full configuration interaction (FCI) quantities. Here, we analyze two open questions: under what conditions the solution of the GHV equation corresponds to a Hamiltonian eigenstate, and the possibility of extending the field of application of this methodology to the study of excited and multiconfigurational states. A brief account of the main difficulties that arise when studying this type of states is described. © 2010 Wiley Periodicals, Inc.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Contracted SchrÖDinger Equation
dc.subject
Correlation Matrix
dc.subject
Electronic Correlation Effects
dc.subject
G-Particle-Hole Matrix
dc.subject
Reduced Density Matrix
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Some theoretical questions about the G-particle-hole hypervirial equation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-23T19:06:27Z
dc.journal.volume
111
dc.journal.number
2
dc.journal.pagination
245-255
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva Jersey
dc.description.fil
Fil: Valdemoro, C.. Consejo Superior de Investigaciones Científicas; España
dc.description.fil
Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
dc.description.fil
Fil: Tel, L. M.. Universidad de Salamanca; España
dc.description.fil
Fil: Pérez Romero, E.. Universidad de Salamanca; España
dc.journal.title
International Journal of Quantum Chemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1002/qua.22678
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.22678
Archivos asociados