Artículo
Casimir force for absorbing media in an open quantum system framework: Scalar model
Fecha de publicación:
11/2011
Editorial:
American Physical Society
Revista:
Physical Review A: Atomic, Molecular and Optical Physics
ISSN:
1050-2947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article we compute the Casimir force between two finite-width mirrors at finite temperature, working in a simplified model in 1+1 dimensions. The mirrors, considered as dissipative media, are modeled by a continuous set of harmonic oscillators which in turn are coupled to an external environment at thermal equilibrium. The calculation of the Casimir force is performed in the framework of the theory of open quantum systems. It is shown that the Casimir interaction has two different contributions: the usual radiation pressure from the vacuum, which is obtained for ideal mirrors without dissipation or losses, and a Langevin force associated with the noise induced by the interaction between dielectric atoms in the slabs and the thermal bath. Both contributions to the Casimir force are needed in order to reproduce the analogous Lifshitz formula in 1+1 dimensions. We also discuss the relationship between the electromagnetic properties of the mirrors and the spectral density of the environment. © 2011 American Physical Society.
Palabras clave:
Quantum Electrodynamics
,
Casimir Effect
,
Open Quantum Systems
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Rubio Lopez, Adrian Ezequiel; Casimir force for absorbing media in an open quantum system framework: Scalar model; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 84; 5; 11-2011; 1-12
Compartir
Altmétricas