Mostrar el registro sencillo del ítem

dc.contributor.author
Zhao, S.  
dc.contributor.author
Hahn, E. N.  
dc.contributor.author
Kad, B.  
dc.contributor.author
Remington, B .A.  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.contributor.author
Meyers, Marc A.  
dc.date.available
2018-08-21T21:46:51Z  
dc.date.issued
2016-04  
dc.identifier.citation
Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B .A.; Bringa, Eduardo Marcial; et al.; Shock compression of [001] single crystal silicon; EDP Sciences; European Physical Journal: Special Topics; 225; 2; 4-2016; 335-341  
dc.identifier.issn
1951-6355  
dc.identifier.uri
http://hdl.handle.net/11336/56500  
dc.description.abstract
Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
EDP Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Silicon  
dc.subject
Shock  
dc.subject
Plasticity  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Shock compression of [001] single crystal silicon  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-15T13:57:15Z  
dc.identifier.eissn
1951-6401  
dc.journal.volume
225  
dc.journal.number
2  
dc.journal.pagination
335-341  
dc.journal.pais
Francia  
dc.description.fil
Fil: Zhao, S.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Kad, B.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Remington, B .A.. Lawrence Livermore National Laboratory; Estados Unidos  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos  
dc.journal.title
European Physical Journal: Special Topics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1140/epjst/e2016-02634-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-02634-7