Mostrar el registro sencillo del ítem
dc.contributor.author
von Wegner, F.
dc.contributor.author
Tagliazucchi, Enzo Rodolfo

dc.contributor.author
Laufs, H.
dc.date.available
2018-08-17T13:30:39Z
dc.date.issued
2017-09
dc.identifier.citation
von Wegner, F.; Tagliazucchi, Enzo Rodolfo; Laufs, H.; Information-theoretical analysis of resting state EEG microstate sequences - non-Markovianity, non-stationarity and periodicities; Elsevier; Journal Neuroimag; 158; 9-2017; 99-111
dc.identifier.issn
1053-8119
dc.identifier.uri
http://hdl.handle.net/11336/56063
dc.description.abstract
We present an information-theoretical analysis of temporal dependencies in EEG microstate sequences during wakeful rest. We interpret microstate sequences as discrete stochastic processes where each state corresponds to a representative scalp potential topography. Testing low-order Markovianity of these discrete sequences directly, we find that none of the recordings fulfils the Markov property of order 0, 1 or 2. Further analyses show that the microstate transition matrix is non-stationary over time in 80% (window size 10 s), 60% (window size 20 s) and 44% (window size 40 s) of the subjects, and that transition matrices are asymmetric in 14/20 (70%) subjects. To assess temporal dependencies globally, the time-lagged mutual information function (autoinformation function) of each sequence is compared to the first-order Markov model defined by the classical transition matrix approach. The autoinformation function for the Markovian case is derived analytically and numerically. For experimental data, we find non-Markovian behaviour in the range of the main EEG frequency bands where distinct periodicities related to the subject's EEG frequency spectrum appear. In particular, the microstate clustering algorithm induces frequency doubling with respect to the EEG power spectral density while the tail of the autoinformation function asymptotically reaches the first-order Markov confidence interval for time lags above 1000 ms. In summary, our results show that resting state microstate sequences are non-Markovian processes which inherit periodicities from the underlying EEG dynamics. Our results interpolate between two diverging models of microstate dynamics, memoryless Markov models on one side, and long-range correlated models on the other: microstate sequences display more complex temporal dependencies than captured by the transition matrix approach in the range of the main EEG frequency bands, but show finite memory content in the long run.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Eeg
dc.subject
Information Theory
dc.subject
Microstates
dc.subject
Non-Markov Process
dc.subject
Periodicity
dc.subject
Resting State
dc.subject
Stationarity
dc.subject.classification
Astronomía

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.subject.classification
Otras Ciencias Biológicas

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Information-theoretical analysis of resting state EEG microstate sequences - non-Markovianity, non-stationarity and periodicities
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-10T17:47:32Z
dc.journal.volume
158
dc.journal.pagination
99-111
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: von Wegner, F.. Goethe Universitat Frankfurt; Alemania
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Goethe Universitat Frankfurt; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.description.fil
Fil: Laufs, H.. Goethe Universitat Frankfurt; Alemania
dc.journal.title
Journal Neuroimag

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.neuroimage.2017.06.062
Archivos asociados