Mostrar el registro sencillo del ítem

dc.contributor.author
Novaes, Cleber G.  
dc.contributor.author
Ferreira, Sergio L.C.  
dc.contributor.author
Neto, João H. S.  
dc.contributor.author
de Santana, Fernanda A.  
dc.contributor.author
Portugal, Lindomar A.  
dc.contributor.author
Goicoechea, Hector Casimiro  
dc.date.available
2018-08-16T19:38:02Z  
dc.date.issued
2016-03  
dc.identifier.citation
Novaes, Cleber G.; Ferreira, Sergio L.C.; Neto, João H. S.; de Santana, Fernanda A.; Portugal, Lindomar A.; et al.; A Multiple Response Function for Optimization of Analytical Strategies Involving Multi-elemental Determination; Bentham Science Publishers; Current Analytical Chemistry; 12; 2; 3-2016; 94-101  
dc.identifier.issn
1573-4110  
dc.identifier.uri
http://hdl.handle.net/11336/56003  
dc.description.abstract
This paper presents a comparison between a multiple response function (MR) proposed for optimization of analyticalstrategies involving multi-element determinations with the desirability function D, which was proposed by Derringerand Suich in 1980. The MR function is established by the average of the sum of the normalized responses for eachanalyte considering the highest value of these. This comparison was performed during the optimization of an spectrometerfor quantification of six elements using inductively coupled plasma optical emission spectrometry (ICP OES). Four instrumentalfactors were studied (auxiliary gas flow rate, plasma gas flow rate, nebulizer gas flow rate and radio frequencypower). A (24) two-level full factorial design and a Box Behnken matrix were developed to evaluate the performance ofthe two multiple response functions. The results found demonstrated great similarity in the interpretations obtained consideringthe effect values of the factors calculated using the two-level full factorial design employing the two multiple responses.Also a Box Behnken design was performed to compare the applicability of the two multiple response functions inquadratic models. The results achieved demonstrated high correlation (0.9998) between the regression coefficients of thetwo models. Also the response surfaces obtained showed great similarity in terms of formats and experimental conditionsfound for the studied factors. Thus, the multiple response (MR) is presented as a simple tool, easy to manipulate, efficientand very helpful for application in analytical procedures involving multi-response. An overview of applications of thisfunction in several multivariate optimization tools as well as in various analytical techniques is presented.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Bentham Science Publishers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Multiple Response Function  
dc.subject
Experimental Design  
dc.subject
Desirability Function D  
dc.subject
Icp Oes  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Multiple Response Function for Optimization of Analytical Strategies Involving Multi-elemental Determination  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-16T17:37:40Z  
dc.journal.volume
12  
dc.journal.number
2  
dc.journal.pagination
94-101  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Oak Park  
dc.description.fil
Fil: Novaes, Cleber G.. Universidade Estadual do Sudoeste da Bahia; Brasil. Universidade Federal da Bahia; Brasil  
dc.description.fil
Fil: Ferreira, Sergio L.C.. Universidade Federal da Bahia; Brasil  
dc.description.fil
Fil: Neto, João H. S.. Universidade Estadual do Sudoeste da Bahia; Brasil  
dc.description.fil
Fil: de Santana, Fernanda A.. Universidade Federal da Bahia; Brasil  
dc.description.fil
Fil: Portugal, Lindomar A.. Universidad de las Islas Baleares; España  
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina  
dc.journal.title
Current Analytical Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.2174/1573411011666150722220335  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/133390/article