Mostrar el registro sencillo del ítem
dc.contributor.author
Uriz, I.
dc.contributor.author
Arzamendi, G.
dc.contributor.author
Lopez, Eduardo
dc.contributor.author
Llorca, J.
dc.contributor.author
Gandía, L. M.
dc.date.available
2018-08-16T17:43:55Z
dc.date.issued
2011-03
dc.identifier.citation
Uriz, I.; Arzamendi, G.; Lopez, Eduardo; Llorca, J.; Gandía, L. M.; Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels; Elsevier Science Sa; Chemical Engineering Journal; 167; 2-3; 3-2011; 603-609
dc.identifier.issn
1385-8947
dc.identifier.uri
http://hdl.handle.net/11336/55944
dc.description.abstract
A three-dimensional computational fluid dynamics (CFD) simulation study of the ethanol steam reforming (ESR) in microreactors with square channels has been carried out. A phenomenological kinetic model describing the ESR on a Co3O4-ZnO catalyst has been established and implemented in the CFD codes. This model includes the ethanol dehydrogenation to acetaldehyde, ethanol decomposition to CO and CH4, acetaldehyde steam reforming to H2 and CO2 and water-gas shift as the reactions describing the catalyst behavior. The very different thermal effects and apparent activation energies of these reactions allow interpreting the influence of the main operating parameters on the microreactors performance. The high activation energy and relatively low energy demand of the ethanol decomposition limit the production of hydrogen at high temperatures and space velocities (up to 70,000h-1) at yields of the order of 70%, that is, 4.2mol of H2 per mol of ethanol fed into the reactor. Another issue is the presence of significant CO contents in the reformate stream. This can be partially solved by increasing the catalyst loading which leads to a lower temperature and then an improved selectivity to ethanol dehydrogenation and acetaldehyde reforming. The microchannel characteristic size in the 0.10-0.70mm range has a strong influence on the microreactor performance that is mainly governed by the surface area-to-volume ratio. For the smallest sizes considered in this study (0.10 and 0.35mm) it has been found that the flow of the gases is nearly isothermal.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Sa
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Computational Fluid Dynamics (Cfd)
dc.subject
Ethanol Steam Reforming
dc.subject
Hydrogen
dc.subject
Microchannel Reactor
dc.subject
Microreactor
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-07-11T13:59:48Z
dc.journal.volume
167
dc.journal.number
2-3
dc.journal.pagination
603-609
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Uriz, I.. Universidad Pública de Navarra; España
dc.description.fil
Fil: Arzamendi, G.. Universidad Pública de Navarra; España
dc.description.fil
Fil: Lopez, Eduardo. Universidad Politécnica de Catalunya; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Llorca, J.. Universidad Politécnica de Catalunya; España
dc.description.fil
Fil: Gandía, L. M.. Universidad Pública de Navarra; España
dc.journal.title
Chemical Engineering Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cej.2010.07.070
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894710009721
Archivos asociados