Artículo
Optimal partition problems for the fractional Laplacian
Fecha de publicación:
04/2018
Editorial:
Springer Heidelberg
Revista:
Annali Di Matematica Pura Ed Applicata
ISSN:
0373-3114
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5].
Palabras clave:
Fractional Capacities
,
Fractional Partial Equations
,
Optimal Partition
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Ritorto, Antonella; Optimal partition problems for the fractional Laplacian; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 2; 4-2018; 501-516
Compartir
Altmétricas