Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Water fluxes between inter-patches and vegetated mounds in flat semiarid landscapes

Rossi, María JulietaIcon ; Ares, Jorge OscarIcon
Fecha de publicación: 01/2017
Editorial: Elsevier Science
Revista: Journal Of Hydrology
ISSN: 0022-1694
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Agrícolas

Resumen

It has been assumed that bare soil (BS) inter-patches in semi arid spotted vegetation behave as sources of water to near vegetated soil (VS) patches. However, little evidence has been gained from direct measurements of overland and infiltration water fluxes between bare soil inter-patches and shrub mounds at a scale compatible with available high resolution imagery and hydrological modeling techniques. The objective of this study is to address the thin scale internal redistribution of water between BS inter-patches and vegetated mounds at relatively flat spotted semiarid landscapes. The relation between plant cover, topography and runoff was inspected with non-parametric association coefficients based on high resolution remotely sensed imagery, ground truth topographic elevation and spatial-explicit field data on potential runoff. Measurements of advective flows at the same spatial scale were carried out at micro-plots of BS and shrub mounds. Water fluxes between BS inter-patch and a shrub mound were simulated under varying typical Patagonian rainfall scenarios with an hydrological model. Results obtained revealed that the soil properties, infiltration and overland flow metrics at the mounds and inter-patches exhibit spatially and dynamic variable hydraulic properties. High micro-topographic roughness and depression storage thickened overland flow depth at VS patches. At BS inter-patches prevailing low slopes and depression storage were found to be important variables attenuating the surface runoff. At both rainfall scenarios simulated, the soil under the shrub mound accumulated more moisture (from direct rain) and reached saturation long before this occurred in BS nearby inter-patch area. Overland flow at the inter-patch was attenuated as it reached the border of the patch, diverging from the latter as it followed the (small) topographic gradient. The overland flow generated inside the vegetated mound was effectively retained at the typical Summer rainfall scenario; while several threads of runoff were routed outside the mound at the typical Winter rainfall scenario. The results here shown fail to detect: (a) enough runoff momentum that could route runon onto the vegetated mounds and (b) a contrast in infiltration rates between BS and the vegetated mound enough to lead to a free-surface gradient in ponded water that could inundate the mound.
Palabras clave: Infiltration , Runoff , Vegetated Mound , Preferential Infiltration
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.102Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/55788
DOI: http://dx.doi.org/10.1016/j.jhydrol.2017.01.016
Colecciones
Articulos(IPEEC)
Articulos de INSTITUTO PATAGONICO PARA EL ESTUDIO DE LOS ECOSISTEMAS CONTINENTALES
Citación
Rossi, María Julieta; Ares, Jorge Oscar; Water fluxes between inter-patches and vegetated mounds in flat semiarid landscapes; Elsevier Science; Journal Of Hydrology; 546; 1-2017; 219-229
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES