Mostrar el registro sencillo del ítem

dc.contributor.author
Ramírez, Claudia Lilián  
dc.contributor.author
Marti, Marcelo Adrian  
dc.contributor.author
Roitberg, Adrián  
dc.date.available
2018-08-15T15:25:37Z  
dc.date.issued
2016-01  
dc.identifier.citation
Ramírez, Claudia Lilián; Marti, Marcelo Adrian; Roitberg, Adrián; Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics; Elsevier Academic Press Inc; Methods In Enzymology.; 578; 1-2016; 123-143  
dc.identifier.issn
0076-6879  
dc.identifier.uri
http://hdl.handle.net/11336/55602  
dc.description.abstract
One of the main goals of chemistry is to understand the underlying principles of chemical reactions, in terms of both its reaction mechanism and the thermodynamics that govern it. Using hybrid quantum mechanics/molecular mechanics (QM/MM)-based methods in combination with a biased sampling scheme, it is possible to simulate chemical reactions occurring inside complex environments such as an enzyme, or aqueous solution, and determining the corresponding free energy profile, which provides direct comparison with experimental determined kinetic and equilibrium parameters. Among the most promising biasing schemes is the multiple steered molecular dynamics method, which in combination with Jarzynski's Relationship (JR) allows obtaining the equilibrium free energy profile, from a finite set of nonequilibrium reactive trajectories by exponentially averaging the individual work profiles. However, obtaining statistically converged and accurate profiles is far from easy and may result in increased computational cost if the selected steering speed and number of trajectories are inappropriately chosen. In this small review, using the extensively studied chorismate to prephenate conversion reaction, we first present a systematic study of how key parameters such as pulling speed, number of trajectories, and reaction progress are related to the resulting work distributions and in turn the accuracy of the free energy obtained with JR. Second, and in the context of QM/MM strategies, we introduce the Hybrid Differential Relaxation Algorithm, and show how it allows obtaining more accurate free energy profiles using faster pulling speeds and smaller number of trajectories and thus smaller computational cost.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Academic Press Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Free Energy  
dc.subject
Jarzynski Relationship  
dc.subject
Multiple Time Step  
dc.subject
Nonequilibrium Dynamics  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-13T18:30:54Z  
dc.journal.volume
578  
dc.journal.pagination
123-143  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Burlingto  
dc.description.fil
Fil: Ramírez, Claudia Lilián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Roitberg, Adrián. University of Florida; Estados Unidos  
dc.journal.title
Methods In Enzymology.  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/bs.mie.2016.05.029  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0076687916300647