Mostrar el registro sencillo del ítem

dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Martinez, Alejandra Mercedes  
dc.contributor.author
Salibian Barrera, Matías Octavio  
dc.date.available
2018-08-15T11:16:42Z  
dc.date.issued
2017-10  
dc.identifier.citation
Boente Boente, Graciela Lina; Martinez, Alejandra Mercedes; Salibian Barrera, Matías Octavio; Robust estimators for additive models using backfitting; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 29; 4; 10-2017; 744-767  
dc.identifier.issn
1048-5252  
dc.identifier.uri
http://hdl.handle.net/11336/55566  
dc.description.abstract
Additive models provide an attractive setup to estimate regression functions in a nonparametric context. They provide a flexible and interpretable model, where each regression function depends only on a single explanatory variable and can be estimated at an optimal univariate rate. Most estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. In this paper, we show that a relatively simple robust version of the backfitting algorithm (consisting of using robust local polynomial smoothers) corresponds to the solution of a well-defined optimisation problem. This formulation allows us to find mild conditions to show Fisher consistency and to study the convergence of the algorithm. Our numerical experiments show that the resulting estimators have good robustness and efficiency properties. We illustrate the use of these estimators on a real data set where the robust fit reveals the presence of influential outliers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Fisher-Consistency  
dc.subject
Kernel Weights  
dc.subject
Robust Estimation  
dc.subject
Smoothing  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust estimators for additive models using backfitting  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-14T14:02:00Z  
dc.journal.volume
29  
dc.journal.number
4  
dc.journal.pagination
744-767  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Martinez, Alejandra Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Salibian Barrera, Matías Octavio. University of British Columbia; Canadá  
dc.journal.title
Journal Of Nonparametric Statistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/10485252.2017.1369077  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/10485252.2017.1369077