Mostrar el registro sencillo del ítem
dc.contributor.author
Boente Boente, Graciela Lina
dc.contributor.author
Martinez, Alejandra Mercedes
dc.contributor.author
Salibian Barrera, Matías Octavio
dc.date.available
2018-08-15T11:16:42Z
dc.date.issued
2017-10
dc.identifier.citation
Boente Boente, Graciela Lina; Martinez, Alejandra Mercedes; Salibian Barrera, Matías Octavio; Robust estimators for additive models using backfitting; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 29; 4; 10-2017; 744-767
dc.identifier.issn
1048-5252
dc.identifier.uri
http://hdl.handle.net/11336/55566
dc.description.abstract
Additive models provide an attractive setup to estimate regression functions in a nonparametric context. They provide a flexible and interpretable model, where each regression function depends only on a single explanatory variable and can be estimated at an optimal univariate rate. Most estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. In this paper, we show that a relatively simple robust version of the backfitting algorithm (consisting of using robust local polynomial smoothers) corresponds to the solution of a well-defined optimisation problem. This formulation allows us to find mild conditions to show Fisher consistency and to study the convergence of the algorithm. Our numerical experiments show that the resulting estimators have good robustness and efficiency properties. We illustrate the use of these estimators on a real data set where the robust fit reveals the presence of influential outliers.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Fisher-Consistency
dc.subject
Kernel Weights
dc.subject
Robust Estimation
dc.subject
Smoothing
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust estimators for additive models using backfitting
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-14T14:02:00Z
dc.journal.volume
29
dc.journal.number
4
dc.journal.pagination
744-767
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Martinez, Alejandra Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Salibian Barrera, Matías Octavio. University of British Columbia; Canadá
dc.journal.title
Journal Of Nonparametric Statistics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/10485252.2017.1369077
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/10485252.2017.1369077
Archivos asociados