Mostrar el registro sencillo del ítem
dc.contributor.author
Amster, Pablo Gustavo
dc.contributor.author
Kuna, Mariel Paula
dc.date.available
2018-08-15T11:16:31Z
dc.date.issued
2018-08
dc.identifier.citation
Amster, Pablo Gustavo; Kuna, Mariel Paula; A note on a system with radiation boundary conditions with non-symmetric linearisation; Springer Wien; Monatshefete Fur Mathematik; 186; 4; 8-2018; 565-577
dc.identifier.issn
0026-9255
dc.identifier.uri
http://hdl.handle.net/11336/55565
dc.description.abstract
We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Wien
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Multiplicity
dc.subject
Radiation Boundary Conditions
dc.subject
Second Order Ode Systems
dc.subject
Topological Degree
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A note on a system with radiation boundary conditions with non-symmetric linearisation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-14T14:01:54Z
dc.journal.volume
186
dc.journal.number
4
dc.journal.pagination
565-577
dc.journal.pais
Austria
dc.journal.ciudad
Viena
dc.description.fil
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
dc.description.fil
Fil: Kuna, Mariel Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
Monatshefete Fur Mathematik
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00605-017-1098-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00605-017-1098-y
Archivos asociados