Mostrar el registro sencillo del ítem

dc.contributor.author
Dickenstein, Alicia Marcela  
dc.contributor.author
Piene, Ragni  
dc.date.available
2018-08-15T11:16:06Z  
dc.date.issued
2017-10  
dc.identifier.citation
Dickenstein, Alicia Marcela; Piene, Ragni; Higher order selfdual toric varieties; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 196; 5; 10-2017; 1759-1777  
dc.identifier.issn
0373-3114  
dc.identifier.uri
http://hdl.handle.net/11336/55563  
dc.description.abstract
The notion of higher order dual varieties of a projective variety, introduced in Piene [Singularities, part 2, (Arcata, Calif., 1981), Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, 1983], is a natural generalization of the classical notion of projective duality. In this paper, we present geometric and combinatorial characterizations of those equivariant projective toric embeddings that satisfy higher order selfduality. We also give several examples and general constructions. In particular, we highlight the relation with Cayley–Bacharach questions and with Cayley configurations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Higher Order Dual  
dc.subject
Toric Variety  
dc.subject
Selfduality  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Higher order selfdual toric varieties  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-14T14:01:34Z  
dc.journal.volume
196  
dc.journal.number
5  
dc.journal.pagination
1759-1777  
dc.journal.pais
Alemania  
dc.journal.ciudad
Heildelberg  
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Piene, Ragni. University of Oslo; Noruega  
dc.journal.title
Annali Di Matematica Pura Ed Applicata  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-017-0637-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10231-017-0637-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1609.05189