Artículo
Maximal solutions for the ∞-eigenvalue problem
Fecha de publicación:
01/2017
Editorial:
De Gruyter
Revista:
Advances in Calculus of Variations
ISSN:
1864-8258
e-ISSN:
1864-8266
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article we prove that the first eigenvalue of the ∞− Laplacian { min {− ∆ ∞ v, |∇ v |− λ 1 , ∞ (Ω) v } = 0 in Ω v = 0 on ∂ Ω , has a unique (up to scalar multiplication) maximal solution. This maximal solution can be obtained as the limit as ` ↗ 1 of concave problems of the form { min {− ∆ ∞ v ` , |∇ v ` |− λ 1 , ∞ (Ω) v ` ` } = 0 in Ω v ` = 0 on ∂ Ω . In this way we obtain that the maximal eigenfunction is the unique one that is the limit of the concave problems as happens for the usual eigenvalue problem for the p − Laplacian for a fixed 1 < p < ∞ .
Palabras clave:
Maximal Solutions
,
Infinity Laplacian
,
Limit Problems
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Da Silva, Joao Vitor; Rossi, Julio Daniel; Salort, Ariel Martin; Maximal solutions for the ∞-eigenvalue problem; De Gruyter; Advances in Calculus of Variations; 1-2017; 1-14
Compartir
Altmétricas