Mostrar el registro sencillo del ítem

dc.contributor.author
Jonckheere, Matthieu Thimothy Samson  
dc.contributor.author
Prabhu, Balakrishna J.  
dc.date.available
2018-08-15T04:08:39Z  
dc.date.issued
2018-04  
dc.identifier.citation
Jonckheere, Matthieu Thimothy Samson; Prabhu, Balakrishna J.; Asymptotics of insensitive load balancing and blocking phases; Springer; Queueing Systems; 88; 3-4; 4-2018; 243-278  
dc.identifier.issn
0257-0130  
dc.identifier.uri
http://hdl.handle.net/11336/55549  
dc.description.abstract
We study a single class of traffic acting on a symmetric set of processor-sharing queues with finite buffers, and we consider the case where the load scales with the number of servers. We address the problem of giving robust performance bounds based on the study of the asymptotic behaviour of the insensitive load balancing schemes, which have the desirable property that the stationary distribution of the resulting stochastic network depends on the distribution of job-sizes only through its mean. It was shown for small systems with losses that they give good estimates of performance indicators, generalizing henceforth Erlang formula, whereas optimal policies are already theoretically and computationally out of reach for networks of moderate size. We characterize the response of symmetric systems under those schemes at different scales and show that three amplitudes of deviations can be identified according to whether ρ< 1 , ρ= 1 , or ρ> 1. A central limit scaling takes place for a sub-critical load; for ρ= 1 , the number of free servers scales like nθθ+1 (θ being the buffer depth and n being the number of servers) and is of order 1 for super-critical loads. This further implies the existence of different phases for the blocking probability. Before a (refined) critical load ρc(n)=1-an-θθ+1, the blocking is exponentially small and becomes of order n-θθ+1 at ρc(n). This generalizes the well-known quality-and-efficiency-driven regime, or Halfin—Whitt regime, for a one-dimensional queue and leads to a generalized staffing rule for a given target blocking probability.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Blocking Phases  
dc.subject
Insensitive Load Balancing  
dc.subject
Mean-Field Scalings  
dc.subject
Qed-Jagerman–Halfin–Whitt Regime  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Asymptotics of insensitive load balancing and blocking phases  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-14T14:13:03Z  
dc.journal.volume
88  
dc.journal.number
3-4  
dc.journal.pagination
243-278  
dc.journal.pais
Alemania  
dc.journal.ciudad
Heidelberg  
dc.description.fil
Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Prabhu, Balakrishna J.. Centre National de la Recherche Scientifique; Francia  
dc.journal.title
Queueing Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11134-017-9559-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11134-017-9559-5