Artículo
A fractional Laplace equation: Regularity of solutions and finite element approximations
Fecha de publicación:
01/2017
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Numerical Analysis
ISSN:
0036-1429
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper deals with the integral version of the Dirichlet homogeneous fractional Laplace equation. For this problem weighted and fractional Sobolev a priori estimates are provided in terms of the Holder regularity of the data. By relying on these results, optimal order of convergence for the standard linear finite element method is proved for quasi-uniform as well as graded meshes. Some numerical examples are given showing results in agreement with the theoretical predictions.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Acosta Rodriguez, Gabriel; Borthagaray Peradotto, Juan Pablo; A fractional Laplace equation: Regularity of solutions and finite element approximations; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 55; 2; 1-2017; 472-495
Compartir
Altmétricas