Mostrar el registro sencillo del ítem
dc.contributor.author
Ferreira, Raúl
dc.contributor.author
Pérez Pérez, Maria Teresa
dc.date.available
2018-08-14T21:17:07Z
dc.date.issued
2017-10
dc.identifier.citation
Ferreira, Raúl; Pérez Pérez, Maria Teresa; A Nonlocal Operator Breaking the Keller-Osserman Condition; De Gruyter; Advanced Nonlinear Studies; 17; 4; 10-2017; 715-725
dc.identifier.issn
1536-1365
dc.identifier.uri
http://hdl.handle.net/11336/55505
dc.description.abstract
This work is concerned about the existence of solutions to the nonlocal semilinear problem - N J (x - y) (u (y) - u (x)) y + h (u (x)) = f (x) x ω u = g x N ω, (-) R N J(x-y)(u(y)-u(x%)), dy+h (u(x)) = f(x),& ω u=g, x R N ω. verifying that lim x → ω x ω u (x) = + ∞ known in the literature as large solutions. We find out that the relation between the diffusion and the absorption term is not enough to ensure such existence, not even assuming that the boundary datum g blows up close to ω. On the contrary, the role to obtain large solutions is played only by the interior source f, which gives rise to large solutions even without the presence of the absorption. We determine necessary and sufficient conditions on f providing large solutions and compute the blow-up rates of such solutions in terms of h and f. Finally, we also study the uniqueness of large solutions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Keller-Osserman Condition
dc.subject
Large Solutions
dc.subject
Nonlocal Diffusion
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Nonlocal Operator Breaking the Keller-Osserman Condition
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-14T14:13:23Z
dc.journal.volume
17
dc.journal.number
4
dc.journal.pagination
715-725
dc.journal.pais
Estados Unidos
dc.journal.ciudad
San Antonio
dc.description.fil
Fil: Ferreira, Raúl. Universidad Complutense de Madrid; España
dc.description.fil
Fil: Pérez Pérez, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Advanced Nonlinear Studies
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2017.17.issue-4/ans-2016-6011/ans-2016-6011.xml
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1515/ans-2016-6011
Archivos asociados