Mostrar el registro sencillo del ítem

dc.contributor.author
Ferreira, Raúl  
dc.contributor.author
Pérez Pérez, Maria Teresa  
dc.date.available
2018-08-14T21:17:07Z  
dc.date.issued
2017-10  
dc.identifier.citation
Ferreira, Raúl; Pérez Pérez, Maria Teresa; A Nonlocal Operator Breaking the Keller-Osserman Condition; De Gruyter; Advanced Nonlinear Studies; 17; 4; 10-2017; 715-725  
dc.identifier.issn
1536-1365  
dc.identifier.uri
http://hdl.handle.net/11336/55505  
dc.description.abstract
This work is concerned about the existence of solutions to the nonlocal semilinear problem - N J (x - y) (u (y) - u (x)) y + h (u (x)) = f (x) x ω u = g x N ω, (-) R N J(x-y)(u(y)-u(x%)), dy+h (u(x)) = f(x),& ω u=g, x R N ω. verifying that lim x → ω x ω u (x) = + ∞ known in the literature as large solutions. We find out that the relation between the diffusion and the absorption term is not enough to ensure such existence, not even assuming that the boundary datum g blows up close to ω. On the contrary, the role to obtain large solutions is played only by the interior source f, which gives rise to large solutions even without the presence of the absorption. We determine necessary and sufficient conditions on f providing large solutions and compute the blow-up rates of such solutions in terms of h and f. Finally, we also study the uniqueness of large solutions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Keller-Osserman Condition  
dc.subject
Large Solutions  
dc.subject
Nonlocal Diffusion  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Nonlocal Operator Breaking the Keller-Osserman Condition  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-14T14:13:23Z  
dc.journal.volume
17  
dc.journal.number
4  
dc.journal.pagination
715-725  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Antonio  
dc.description.fil
Fil: Ferreira, Raúl. Universidad Complutense de Madrid; España  
dc.description.fil
Fil: Pérez Pérez, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Advanced Nonlinear Studies  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2017.17.issue-4/ans-2016-6011/ans-2016-6011.xml  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1515/ans-2016-6011