Artículo
Elliptic equations with critical exponent on a torus invariant region of S3
Fecha de publicación:
12/2017
Editorial:
World Scientific
Revista:
Communications In Contemporary Mathematics
ISSN:
0219-1997
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the multiplicity of positive solutions of a Brezis–Nirenberg-type problem on a region of the three-dimensional sphere, which is invariant by the natural torus action. In the paper by Brezis and Peletier, the case in which the region is invariant by the (Formula presented.)-action is considered, namely, when the region is a spherical cap. We prove that the number of positive solutions increases as the parameter of the equation tends to (Formula presented.), giving an answer to a particular case of an open problem proposed in the above referred paper.
Palabras clave:
Brezis-Nirenberg Problem
,
Nonlinear Elliptic Equations
,
Yamabe Equation
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Rey, Carolina Ana; Elliptic equations with critical exponent on a torus invariant region of S3; World Scientific; Communications In Contemporary Mathematics; 12-2017; 1-23
Compartir
Altmétricas