Artículo
A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups
Fecha de publicación:
02/2017
Editorial:
European Mathematical Society
Revista:
Journal of the European Mathematical Society
ISSN:
1435-9855
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Over fields of arbitrary characteristic we classify all braid-indecomposable tuples of at least two absolutely simple Yetter-Drinfeld modules over non-abelian groups such that the group is generated by the support of the tuple and the Nichols algebra of the tuple is finite-dimensional. Such tuples are classified in terms of analogs of Dynkin diagrams which encode much information about the Yetter-Drinfeld modules. We also compute the dimensions of these finite-dimensional Nichols algebras. Our proof uses essentially theWeyl groupoid of a tuple of simple Yetter-Drinfeld modules and our previous result on pairs.
Palabras clave:
Hopf Algebra
,
Nichols Algebra
,
Weyl Groupoid
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Heckenberger, István; Vendramin, Claudio Leandro; A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups; European Mathematical Society; Journal of the European Mathematical Society; 19; 2; 2-2017; 299-356
Compartir
Altmétricas