Artículo
Maximal operators for the P-laplacian family
Fecha de publicación:
04/2017
Editorial:
Pacific Journal Mathematics
Revista:
Pacific Journal Of Mathematics
ISSN:
0030-8730
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove existence and uniqueness of viscosity solutions for the problem: max-Δp1u(x), -Δp2u(x) = f(x) in a bounded smooth domain Ω⊂ℝN with u=g on ∂Ω. Here -Δpu=(N+ p)-1|Du|2-pdiv (|Du|p-2Du) is the 1-homogeneous p-Laplacian and we assume that 2 ≤ p1; p2 ≤ ∞. This equation appears naturally when one considers a tug-of-war game in which one of the players (the one who seeks to maximize the payoff ) can choose at every step which are the parameters of the game that regulate the probability of playing a usual tug-ofwar game (without noise) or playing at random. Moreover, the operator max-Δp1u(x), -Δp2u(x) provides a natural analogue with respect to p- Laplacians to the Pucci maximal operator for uniformly elliptic operators. We provide two different proofs of existence and uniqueness for this problem. The first one is based in pure PDE methods (in the framework of viscosity solutions) while the second one is more connected to probability and uses game theory.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Blanc, Pablo; Pinasco, Juan Pablo; Rossi, Julio Daniel; Maximal operators for the P-laplacian family; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 287; 2; 4-2017; 257-295
Compartir
Altmétricas