Mostrar el registro sencillo del ítem
dc.contributor.author
Carando, Daniel Germán
dc.contributor.author
Defant, Andreas
dc.contributor.author
García, Domingo
dc.contributor.author
Maestre, Manuel
dc.contributor.author
Sevilla Peris, Pablo
dc.date.available
2018-08-14T17:44:55Z
dc.date.issued
2015-06
dc.identifier.citation
Carando, Daniel Germán; Defant, Andreas; García, Domingo; Maestre, Manuel; Sevilla Peris, Pablo; The Dirichlet-Bohr radius; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 171; 1; 6-2015; 23-37
dc.identifier.issn
0065-1036
dc.identifier.uri
http://hdl.handle.net/11336/55426
dc.description.abstract
Denote by Ω(n) the number of prime divisors of n ∈ ℕ (counted with multiplicities). For x ∈ ℕ define the Dirichlet-Bohr radius L(x) to be the best r > 0 such that for every finite Dirichlet polynomial Σn≤xann-s we have ∑n ≤ x |an| rΩ(n) ≤ supt ∈ ℝ | ∑n ≤ x ann-it|. We prove that the asymptotically correct order of L(x) is (log x)1/4x-1/8. Following Bohr's vision our proof links the estimation of L(x) with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows translating various results on Bohr radii in a systematic way into results on Dirichlet-Bohr radii, and vice versa.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Polish Academy of Sciences. Institute of Mathematics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bohr Radius
dc.subject
Dirichlet Series
dc.subject
Holomorphic Functions
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The Dirichlet-Bohr radius
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-14T13:59:02Z
dc.journal.volume
171
dc.journal.number
1
dc.journal.pagination
23-37
dc.journal.pais
Polonia
dc.journal.ciudad
Varsovia
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Defant, Andreas. Universitat Oldenburg; Alemania
dc.description.fil
Fil: García, Domingo. Universidad de Valencia; España
dc.description.fil
Fil: Maestre, Manuel. Universidad de Valencia; España
dc.description.fil
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
dc.journal.title
Acta Arithmetica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/en/publishing-house/journals-and-series/acta-arithmetica/all/171/1/91012/the-dirichlet-bohr-radius
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/aa171-1-3
Archivos asociados