Mostrar el registro sencillo del ítem
dc.contributor.author
Messina, Paula Verónica
dc.contributor.author
Besada Porto, José Miguel
dc.contributor.author
Rial, Ramón
dc.contributor.author
Gonzalez Díaz, Humberto
dc.contributor.author
Ruso, Juan M.
dc.date.available
2018-08-13T22:06:25Z
dc.date.issued
2016-09
dc.identifier.citation
Messina, Paula Verónica; Besada Porto, José Miguel; Rial, Ramón; Gonzalez Díaz, Humberto; Ruso, Juan M.; Computational modeling and experimental facts of mixed self-assembly systems; Bentham Science Publishers; Current Pharmaceutical Design; 22; 34; 9-2016; 5249-5256
dc.identifier.issn
1381-6128
dc.identifier.uri
http://hdl.handle.net/11336/55275
dc.description.abstract
The formation of liposomes, nanoparticle micelles, and related systems by mixtures of drugs and/or surfactants is of major relevance for the design of drug delivery systems. We can design new systems using different compounds. Traditionally these systems are created by trial and error using experimental data. However, in most cases measuring all the possible combinations represents a extensive work and almost always unaffordable. In this sense, we can use theoretical concepts and develop computational models to predict different physicochemical properties of self-aggregation processes of mixed molecular systems. In a previous work, we developed a new PT-LFER model (Linear Free Energy Relationships, LFER, combined with Perturbation Theory, PT, ideas) for binary systems. The best PT-LFER model found predicted the effects of 25000 perturbations over nine different properties of binary systems. The present work has two parts. Firstly, we carry out an analysis on the new results on the applications and experimental-theoretical studies of binary selfassembled systems. In the second part, we report for the first time, a new experimental-theoretic study of the NaDC-DTAB binary system. For this purpose, we have combined experimental procedures plus physicochemical thermodynamic framework with the PT-LFER model reported in our previous work.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Bentham Science Publishers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Drug Delivery Systems
dc.subject
Linear Free Energy Relationships
dc.subject
Micelle Self-Aggregation
dc.subject
Nanoparticles
dc.subject
Perturbation Theory
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Computational modeling and experimental facts of mixed self-assembly systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-10T16:21:04Z
dc.journal.volume
22
dc.journal.number
34
dc.journal.pagination
5249-5256
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Oak Park
dc.description.fil
Fil: Messina, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Besada Porto, José Miguel. Universidad de Santiago de Compostela. Facultad de Física; España
dc.description.fil
Fil: Rial, Ramón. Universidad de Santiago de Compostela. Facultad de Física; España
dc.description.fil
Fil: Gonzalez Díaz, Humberto. Universidad del País Vasco; España. Fundación Vasca para la Ciencia; España
dc.description.fil
Fil: Ruso, Juan M.. Universidad de Santiago de Compostela. Facultad de Física; España
dc.journal.title
Current Pharmaceutical Design
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/142153/article
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2174/1381612822666160513150054
Archivos asociados