Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A method to improve MODIS AOD values: Application to South America

Lanzaco, Bethania LuzIcon ; Olcese, Luis EduardoIcon ; Palancar, Gustavo GerardoIcon ; Toselli, Beatriz MargaritaIcon
Fecha de publicación: 27/06/2016
Editorial: Taiwan Assoc Aerosol Res-taar
Revista: Aerosol And Air Quality Research
ISSN: 1680-8584
e-ISSN: 2071-1409
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

We present a method to correct aerosol optical depth (AOD) values taken from Collection 6 MODIS observations, which resulted in values closer to those recorded by the ground-based network AERONET. The method is based on machine learning techniques (Artificial Neural Networks and Support Vector Regression), and uses MODIS AOD values and meteorological parameters as inputs. The method showed improved results, compared with the direct MODIS AOD, when applied to nine stations in South America. The percentage of improvement, measured in terms of R2, ranged from 2% (Alta Floresta) to 79% (Buenos Aires). This improvement was also quantified considering the percentage of data within the MODIS expected error, being 91% for this method and 57% for direct correlation. The method corrected not only the systematic bias in temporal data series but also the outliers. To highlight this ability, the results for each AERONET station were individually analyzed. Considering the results as a whole, this method showed to be a valuable tool to enhance MODIS AOD retrievals, especially for locations with systematic deviations.
Palabras clave: Aeronet , Aod Satellite Retrieval , Artificial Neural Networks , Modis Aod Bias Correction , Support Vector Regression
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.726Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/54894
URL: http://aaqr.org/Doi.php?id=16_AAQR-15-05-OA-0375
DOI: http://dx.doi.org/10.4209/aaqr.2015.05.0375
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Lanzaco, Bethania Luz; Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; A method to improve MODIS AOD values: Application to South America; Taiwan Assoc Aerosol Res-taar; Aerosol And Air Quality Research; 16; 6; 27-6-2016; 1509-1522
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES