Artículo
A method to improve MODIS AOD values: Application to South America
Lanzaco, Bethania Luz
; Olcese, Luis Eduardo
; Palancar, Gustavo Gerardo
; Toselli, Beatriz Margarita
Fecha de publicación:
27/06/2016
Editorial:
Taiwan Assoc Aerosol Res-taar
Revista:
Aerosol And Air Quality Research
ISSN:
1680-8584
e-ISSN:
2071-1409
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present a method to correct aerosol optical depth (AOD) values taken from Collection 6 MODIS observations, which resulted in values closer to those recorded by the ground-based network AERONET. The method is based on machine learning techniques (Artificial Neural Networks and Support Vector Regression), and uses MODIS AOD values and meteorological parameters as inputs. The method showed improved results, compared with the direct MODIS AOD, when applied to nine stations in South America. The percentage of improvement, measured in terms of R2, ranged from 2% (Alta Floresta) to 79% (Buenos Aires). This improvement was also quantified considering the percentage of data within the MODIS expected error, being 91% for this method and 57% for direct correlation. The method corrected not only the systematic bias in temporal data series but also the outliers. To highlight this ability, the results for each AERONET station were individually analyzed. Considering the results as a whole, this method showed to be a valuable tool to enhance MODIS AOD retrievals, especially for locations with systematic deviations.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Lanzaco, Bethania Luz; Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; A method to improve MODIS AOD values: Application to South America; Taiwan Assoc Aerosol Res-taar; Aerosol And Air Quality Research; 16; 6; 27-6-2016; 1509-1522
Compartir
Altmétricas