Mostrar el registro sencillo del ítem

dc.contributor.author
Solazzi, Santiago Gabriel  
dc.contributor.author
Rubino, Jorge German  
dc.contributor.author
Muller, Tobias M.  
dc.contributor.author
Milani, Marco  
dc.contributor.author
Guarracino, Luis  
dc.contributor.author
Holliger, Klaus  
dc.date.available
2018-08-09T20:21:41Z  
dc.date.issued
2016-11  
dc.identifier.citation
Solazzi, Santiago Gabriel; Rubino, Jorge German; Muller, Tobias M.; Milani, Marco; Guarracino, Luis; et al.; An energy-based approach to estimate seismic attenuation due to wave-induced fluid flow in heterogeneous poroelastic media; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 207; 2; 11-2016; 823-832  
dc.identifier.issn
0956-540X  
dc.identifier.uri
http://hdl.handle.net/11336/54883  
dc.description.abstract
Wave-induced fluid flow (WIFF) due to the presence of mesoscopic heterogeneities is considered as one of the main seismic attenuation mechanisms in the shallower parts of the Earth's crust. For this reason, several models have been developed to quantify seismic attenuation in the presence of heterogeneities of varying complexity, ranging from periodically layered media to rocks containing fractures and highly irregular distributions of fluid patches. Most of these models are based on Biot's theory of poroelasticity and make use of the assumption that the upscaled counterpart of a heterogeneous poroelastic medium can be represented by a homogeneous viscoelastic solid. Under this dynamic-equivalent viscoelastic medium (DEVM) assumption, attenuation is quantified in terms of the ratio of the imaginary and real parts of a frequency-dependent, complex-valued viscoelastic modulus. Laboratory measurements on fluid-saturated rock samples also rely on this DEVM assumption when inferring attenuation from the phase shift between the applied stress and the resulting strain. However, whether it is correct to use an effective viscoelastic medium to represent the attenuation arising from WIFF at mesoscopic scales in heterogeneous poroelastic media remains largely unexplored. In this work, we present an alternative approach to estimate seismic attenuation due to WIFF. It is fully rooted in the framework of poroelasticity and is based on the quantification of the dissipated power and stored strain energy resulting from numerical oscillatory relaxation tests. We employ this methodology to compare different definitions of the inverse quality factor for a set of pertinent scenarios, including patchy saturation and fractured rocks. This numerical analysis allows us to verify the correctness of the DEVM assumption in the presence of different kinds of heterogeneities. The proposed methodology has the key advantage of providing the local contributions of energy dissipation to the overall seismic attenuation, information that is not available when attenuation is retrieved from methods based on the DEVM assumption. Using the local attenuation contributions we provide further insights into the WIFF mechanism for randomly distributed fluid patches and explore the accumulation of energy dissipation in the vicinity of fractures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Acoustic Properties  
dc.subject
Computational Seismology  
dc.subject
Seismic Attenuation  
dc.subject
Theoretical Seismology  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An energy-based approach to estimate seismic attenuation due to wave-induced fluid flow in heterogeneous poroelastic media  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-09T15:17:38Z  
dc.journal.volume
207  
dc.journal.number
2  
dc.journal.pagination
823-832  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Solazzi, Santiago Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.description.fil
Fil: Rubino, Jorge German. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Muller, Tobias M.. CSIRO Energy; Australia  
dc.description.fil
Fil: Milani, Marco. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Guarracino, Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.description.fil
Fil: Holliger, Klaus. Universite de Lausanne; Suiza  
dc.journal.title
Geophysical Journal International  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1093/gji/ggw302