Mostrar el registro sencillo del ítem

dc.contributor.author
Talevi, Alan  
dc.date.available
2018-08-09T18:54:15Z  
dc.date.issued
2016-10  
dc.identifier.citation
Talevi, Alan; Computational approaches for innovative antiepileptic drug discovery; Taylor & Francis; Expert Opinion On Drug Discovery; 11; 10; 10-2016; 1001-1016  
dc.identifier.issn
1746-0441  
dc.identifier.uri
http://hdl.handle.net/11336/54819  
dc.description.abstract
Introduction: Despite the approval of a large number of antiepileptic agents over the past 25 years, there has been no significant improvement in efficacy of treatments, with one third of patients suffering from intractable epilepsy. This scenario has prompted the search for innovative drug discovery solutions. While network pharmacology and explanations of the drug resistance phenomena have been proposed to drive the search for more efficacious therapeutic solutions, such alternative approaches have not fully taken hold within the antiepileptic drug discovery community so far. Areas covered: Herein, the author discusses the impact that network pharmacology and the current hypotheses of refractory epilepsy and drug repurposing could have if integrated with anti-epileptic computer-aided discovery. Expert opinion: With many complex diseases, the advancement in the understanding of disorder pathophysiology in addition to the contribution of systems biology have rapidly translated into the discovery of novel drug candidates. However, antiepileptic drug developers have fallen a little behind in this regard, with fewer examples of computer-aided antiepileptic drug design and network-based approximations appearing in scientific literature. New generation single-target agents have so far shown limited success in terms of enhanced efficacy; in contrast, multi-target agents could possibly demonstrate improved safety and efficacy.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Drug Design  
dc.subject
Drug Repurposing  
dc.subject
Epilepsy  
dc.subject
Hybrid Molecules  
dc.subject
Multi-Target Agents  
dc.subject
Network Pharmacology  
dc.subject
Phenotypic Screening  
dc.subject
Qsar  
dc.subject
Refractory Epilepsy  
dc.subject
Systems Biology  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Computational approaches for innovative antiepileptic drug discovery  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-09T15:19:06Z  
dc.journal.volume
11  
dc.journal.number
10  
dc.journal.pagination
1001-1016  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Expert Opinion On Drug Discovery  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/17460441.2016.1216965  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17460441.2016.1216965