Artículo
On the value set of small families of polynomials over a finite field, I
Fecha de publicación:
05/2014
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Combinatorial Theory Series A
ISSN:
0097-3165
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We obtain an estimate on the average cardinality of the value set of any family of monic polynomials of Fq[T] of degree d for which s consecutive coefficients ad -1, ad-s are fixed. Our estimate holds without restrictions on the characteristic of Fq and asserts that V(d, s, a) = μdq+O(1), where V(d, s, a) is such an average cardinality, μd:=∑r=1d(-1)r-1/r! and a : = (a d-1,..., ad-s). We provide an explicit upper bound for the constant underlying the O-notation in terms of d and s with "good" behavior. Our approach reduces the question to estimate the number of Fq-rational points with pairwise-distinct coordinates of a certain family of complete intersections defined over Fq. We show that the polynomials defining such complete intersections are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning the singular locus of the varieties under consideration, from which a suitable estimate on the number of Fq-rational points is established.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Cesaratto, Eda; Matera, Guillermo; Pérez, Mariana; Privitelli, Melina Lorena; On the value set of small families of polynomials over a finite field, I; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 124; 1; 5-2014; 203-227
Compartir
Altmétricas